Exercise Sheet 7

Exercise 1. Let $X \subseteq \mathbb{P}^{3}$ be the degree-3 Veronese embedding of \mathbb{P}^{1}, i.e., the image of the morphism

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}, \quad\left(x_{0}: x_{1}\right) \rightarrow\left(y_{0}: y_{1}: y_{2}: y_{3}\right)=\left(x_{0}^{3}: x_{0}^{2} x_{1}: x_{0} x_{1}^{2}: x_{1}^{3}\right)
$$

Moreover, let $a=(0: 0: 1: 0) \in \mathbb{P}^{3}$ and $L=V\left(y_{2}\right) \subseteq \mathbb{P}^{3}$ and let f be the projection from a to L.
a) Determine an equation of the curve $f(X)$ in $L \cong \mathbb{P}^{2}$.
b) Is $f: X \rightarrow f(X)$ an isomorphism onto its image?

Exercise 2.

a) For any $n, d \in \mathbb{N}_{>0}$, find explicit equations describing the image of the degree- d Veronese embedding

$$
F: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N},\left(x_{i}\right)_{i=0, \ldots, n} \mapsto\left(z_{\alpha}\right)_{\alpha \in \mathbb{N}^{n+1}: \sum \alpha_{i}=d}=\left(x^{\alpha}=\prod_{i=0}^{n} x_{i}^{\alpha_{i}}\right)_{\alpha}
$$

of \mathbb{P}^{n} in \mathbb{P}^{N}, where $N=\binom{n+d}{n}-1$.
b) Prove that every projective variety is isomorphic to the zero locus of quadratic polynomials in a projective space.

Exercise 3. We denote the Plücker coordinates of the Grassmannian $G(2,4)$ in \mathbb{P}^{5} by $x_{i j}$ for $1 \leq i<j \leq 4$.
a) Show that $G(2,4)=V\left(x_{12} x_{34}-x_{13} x_{24}+x_{14} x_{23}\right)$.
b) Let $L \subseteq \mathbb{P}^{3}$ be an arbitrary line. Show that the set of lines in \mathbb{P}^{3} that intersect L, considered as a subset of $G(2,4) \subseteq \mathbb{P}^{5}$, is the zero locus of a homogeneous linear polynomial.

How many lines in \mathbb{P}^{3} would you expect to intersect four general given lines?
Exercise 4. Show that the following sets are projective varieties:
a) the incidence correspondence
$\left\{(L, a) \in G(k, n) \times \mathbb{P}^{n-1}: L \subseteq \mathbb{P}^{n-1}\right.$ a $(k-1)$-dimensional linear subspace and $\left.a \in L\right\} ;$
b) the join of two disjoint varieties $X, Y \subseteq \mathbb{P}^{n}$, i.e., the union of all lines in \mathbb{P}^{n} intersecting both X and Y.

