Exercise Sheet 8

Exercise 1. Let $\widetilde{\mathbb{A}}^{3}$ be the blow-up of \mathbb{A}^{3} at the line $L=V\left(x_{1}, x_{2}\right) \cong \mathbb{A}^{1}$. Show that its exceptional set is isomorphic to $\mathbb{A}^{1} \times \mathbb{P}^{1}$. When do the strict transforms of two lines in \mathbb{A}^{3} through L intersect in the blow-up? What is therefore the geometric meaning of the points in the exceptional set (analogously to the blow-up of a point, in which case the points of the exceptional set correspond to the directions through the blown-up point)?

Exercise 2. Show that any irreducible quadric hypersurface $Q \subseteq \mathbb{P}^{n}$ over a field of characteristic not equal to 2 is birational to \mathbb{P}^{n-1}. Can you give an example of some Q which is not isomorphic to \mathbb{P}^{n-1} ?

Exercise 3. Let $X \subseteq \mathbb{A}^{n}$ be an affine variety, and let $Y_{1}, Y_{2} \subseteq X$ be irreducible, closed subsets, none contained in the other. Moreover, let \widetilde{X} be the blow-up of X at the ideal $I\left(Y_{1}\right)+I\left(Y_{2}\right)$. Show that the strict transforms of Y_{1} and Y_{2} in \widetilde{X} are disjoint.

Exercise 4. Let $J \unlhd \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and assume that the corresponding affine variety $X=V(J) \subseteq \mathbb{A}^{n}$ contains the origin. Consider the blow-up $\widetilde{X} \subseteq \widetilde{\mathbb{A}}^{n} \subseteq \mathbb{A}^{n} \times \mathbb{P}^{n-1}$ at x_{1}, \ldots, x_{n}, and denote the homogeneous coordinates of \mathbb{P}^{n-1} by y_{1}, \ldots, y_{n}.
a) We know already that $\widetilde{\mathbb{A}}^{n}$ can be covered by affine spaces, with one coordinate patch being

$$
\begin{aligned}
i: U=\mathbb{A}^{n} & \rightarrow \widetilde{\mathbb{A}}^{n} \subseteq \mathbb{A}^{n} \times \mathbb{P}^{n-1} \\
\left(x_{1}, y_{2}, \ldots, y_{n}\right) & \mapsto\left(\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right),\left(1: y_{2}: \cdots: y_{n}\right)\right) .
\end{aligned}
$$

Prove that on this coordinate patch the blow-up \widetilde{X} is given as the zero locus of the polynomials

$$
\frac{f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)}{x_{1}^{\min \operatorname{deg} f}}
$$

for all non-zero $f \in J$, where min $\operatorname{deg} f$ denotes the smallest degree of a monomial in f.
Hint: You can use without proof the following variant of [Gathmann, Exercise 2.23]:
For $I, J \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ one has $\overline{V(I) \backslash V(J)}=V\left(I: J^{\infty}\right)$ where

$$
\left(I: J^{\infty}\right)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: \exists m \in \mathbb{N}, g \in J^{m} \text { with } f g \in I\right\}
$$

b) Show that the exceptional set of the blow-up \widetilde{X} is

$$
V_{p}\left(f^{\text {in }}(y): f \in J\right) \subseteq \mathbb{P}^{n-1} \cong\{0\} \times \mathbb{P}^{n-1}
$$

where $f^{\text {in }}$ is the initial term of f, i.e. the sum of all monomials in f of smallest degree. Consequently, the tangent cone of X at the origin is

$$
C_{0} X=V_{a}\left(f^{\text {in }}: f \in J\right) \subseteq \mathbb{A}^{n} .
$$

