Exercise Sheet 8

Exercise 1. Let $\widetilde{\mathbb{A}}^3$ be the blow-up of \mathbb{A}^3 at the line $L = V(x_1, x_2) \cong \mathbb{A}^1$. Show that its exceptional set is isomorphic to $\mathbb{A}^1 \times \mathbb{P}^1$. When do the strict transforms of two lines in \mathbb{A}^3 through L intersect in the blow-up? What is therefore the geometric meaning of the points in the exceptional set (analogously to the blow-up of a point, in which case the points of the exceptional set correspond to the directions through the blow-up point)?

Exercise 2. Show that any irreducible quadric hypersurface $Q \subseteq \mathbb{P}^n$ over a field of characteristic not equal to 2 is birational to \mathbb{P}^{n-1} . Can you give an example of some Q which is not isomorphic to \mathbb{P}^{n-1} ?

Exercise 3. Let $X \subseteq \mathbb{A}^n$ be an affine variety, and let $Y_1, Y_2 \subseteq X$ be irreducible, closed subsets, none contained in the other. Moreover, let \widetilde{X} be the blow-up of X at the ideal $I(Y_1) + I(Y_2)$. Show that the strict transforms of Y_1 and Y_2 in \widetilde{X} are disjoint.

Exercise 4. Let $J \leq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal, and assume that the corresponding affine variety $X = V(J) \subseteq \mathbb{A}^n$ contains the origin. Consider the blow-up $\widetilde{X} \subseteq \widetilde{\mathbb{A}}^n \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}$ at x_1, \ldots, x_n , and denote the homogeneous coordinates of \mathbb{P}^{n-1} by y_1, \ldots, y_n .

a) We know already that $\widetilde{\mathbb{A}}^n$ can be covered by affine spaces, with one coordinate patch being

$$i: U = \mathbb{A}^n \to \widetilde{\mathbb{A}}^n \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1},$$

$$(x_1, y_2, \dots, y_n) \mapsto ((x_1, x_1 y_2, \dots, x_1 y_n), (1: y_2: \dots: y_n)).$$

Prove that on this coordinate patch the blow-up \widetilde{X} is given as the zero locus of the polynomials

$$\frac{f(x_1, x_1y_2, \dots, x_1y_n)}{x_1^{\min \deg f}}$$

for all non-zero $f \in J$, where min deg f denotes the smallest degree of a monomial in f.

Hint: You can use without proof the following variant of [Gathmann, Exercise 2.23]:

For
$$I, J \leq K[x_1, \dots, x_n]$$
 one has $\overline{V(I) \setminus V(J)} = V(I : J^{\infty})$ where
 $(I : J^{\infty}) = \{f \in K[x_1, \dots, x_n] : \exists m \in \mathbb{N}, g \in J^m \text{ with } fg \in I\}.$

b) Show that the exceptional set of the blow-up \widetilde{X} is

$$V_p\left(f^{\text{in}}(y): f \in J\right) \subseteq \mathbb{P}^{n-1} \cong \{0\} \times \mathbb{P}^{n-1},$$

where f^{in} is the initial term of f, i.e. the sum of all monomials in f of smallest degree. Consequently, the tangent cone of X at the origin is

$$C_0 X = V_a(f^{\text{in}} : f \in J) \subseteq \mathbb{A}^n.$$