Exercise Sheet 9

Exercise 1. Prove the projective Jacobi criterion: Let $X \subseteq \mathbb{P}^n$ be a projective variety with ideal $I(X) = \langle f_1, \ldots, f_r \rangle$, and let $a \in X$. Then X is smooth at a if and only if the rank of the $r \times (n+1)$ Jacobi matrix

$$J = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{i,j}$$

is at least $n - \operatorname{codim}_X\{a\}$. Hint: Show and use that

$$\sum_{i=0}^{n} x_i \cdot \frac{\partial f}{\partial x_i} = df$$

for every homogeneous polynomial $f \in K[x_0, \ldots, x_n]$ of degree d.

Exercise 2. For $k \in \mathbb{N}_{>0}$ let X_k be the complex singular affine curve

$$X_k := V(x_2^2 - x_1^{2k+1}) \subseteq \mathbb{A}^2_{\mathbb{C}}$$

and denote by $\widetilde{X}_k \subseteq \widetilde{\mathbb{A}}^2$ the blow-ups of X_k and \mathbb{A}^2 at the origin, respectively.

- a) Use suitable coordinates on $\widetilde{\mathbb{A}}^2$ to determine all k for which \widetilde{X}_k is smooth.
- b) Show that X_k is not isomorphic to X_l if $k \neq l$.

Hint: Follow the idea of [Gathmann, Example 10.16].

Exercise 3. Let $n \ge 2$. Prove:

- a) Every smooth hypersurface in \mathbb{P}^n is irreducible.
- b) A general hypersurface in $\mathbb{P}^n_{\mathbb{C}}$ is smooth (and thus by a) irreducible). More precisely, for a given $d \in \mathbb{N}_{>0}$ the vector space $\mathbb{C}[x_0, \ldots, x_n]_d$ has dimension

$$\binom{n+d}{n}$$
,

and so the space of all homogeneous degree-d polynomials in x_0, \ldots, x_n modulo scalars can be identified with the projective space $\mathbb{P}_{\mathbb{C}}^{\binom{n+d}{n}-1}$. Show that the subset of this projective space of all (classes of) polynomials f such that f is irreducible and $V_p(f)$ is smooth is dense and open.

$$F:X\to \mathbb{P}^2, a\mapsto \left(\frac{\partial f}{\partial x_0}(a):\frac{\partial f}{\partial x_1}(a):\frac{\partial f}{\partial x_2}(a)\right)$$

is called the dual curve to X.

- a) Find a geometric description of F. What does it mean geometrically if F(a) = F(b) for two distinct points a, b in X?
- b) If X is a conic (i.e., an irreducible curve of degree 2), prove that its dual F(X) is also a conic.
- c) For any five lines in P² in general position, show that there is a unique conic in P² that is tangent to all of them.
 Hint: You can use without proof that the dual curve of the dual curve is again the original curve.