Exercise Sheet 9

Exercise 1. Prove the projective Jacobi criterion:
Let $X \subseteq \mathbb{P}^{n}$ be a projective variety with ideal $I(X)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, and let $a \in X$. Then X is smooth at a if and only if the rank of the $r \times(n+1)$ Jacobi matrix

$$
J=\left(\frac{\partial f_{i}}{\partial x_{j}}(a)\right)_{i, j}
$$

is at least $n-\operatorname{codim}_{X}\{a\}$.
Hint: Show and use that

$$
\sum_{i=0}^{n} x_{i} \cdot \frac{\partial f}{\partial x_{i}}=d f
$$

for every homogeneous polynomial $f \in K\left[x_{0}, \ldots, x_{n}\right]$ of degree d.
Exercise 2. For $k \in \mathbb{N}_{>0}$ let X_{k} be the complex singular affine curve

$$
X_{k}:=V\left(x_{2}^{2}-x_{1}^{2 k+1}\right) \subseteq \mathbb{A}_{\mathbb{C}}^{2}
$$

and denote by $\widetilde{X}_{k} \subseteq \widetilde{\mathbb{A}}^{2}$ the blow-ups of X_{k} and \mathbb{A}^{2} at the origin, respectively.
a) Use suitable coordinates on $\widetilde{\mathbb{A}}^{2}$ to determine all k for which \widetilde{X}_{k} is smooth.
b) Show that X_{k} is not isomorphic to X_{l} if $k \neq l$.

Hint: Follow the idea of [Gathmann, Example 10.16].
Exercise 3. Let $n \geq 2$. Prove:
a) Every smooth hypersurface in \mathbb{P}^{n} is irreducible.
b) A general hypersurface in $\mathbb{P}_{\mathbb{C}}^{n}$ is smooth (and thus by a) irreducible). More precisely, for a given $d \in \mathbb{N}_{>0}$ the vector space $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$ has dimension

$$
\binom{n+d}{n}
$$

and so the space of all homogeneous degree-d polynomials in x_{0}, \ldots, x_{n} modulo scalars can be identified with the projective space $\mathbb{P}_{\mathbb{C}}^{\left({ }_{\mathbb{C}}^{\left.\left(\begin{array}{r}n+d\end{array}\right)-1\right)} \text {. Show that the subset }\right.}$ of this projective space of all (classes of) polynomials f such that f is irreducible and $V_{p}(f)$ is smooth is dense and open.

Exercise 4. Assume that the characteristic of K is not equal to 2 , and let f be a homogeneous polynomial in $K\left[x_{0}, x_{1}, x_{2}\right]$ whose partial derivatives $\frac{\partial f}{\partial x_{i}}$ for $i=0,1,2$ do not vanish simultaneously at any point of $X=V_{p}(f) \subseteq \mathbb{P}^{2}$. Then the image of the morphism

$$
F: X \rightarrow \mathbb{P}^{2}, a \mapsto\left(\frac{\partial f}{\partial x_{0}}(a): \frac{\partial f}{\partial x_{1}}(a): \frac{\partial f}{\partial x_{2}}(a)\right)
$$

is called the dual curve to X.
a) Find a geometric description of F. What does it mean geometrically if $F(a)=F(b)$ for two distinct points a, b in X ?
b) If X is a conic (i.e., an irreducible curve of degree 2), prove that its dual $F(X)$ is also a conic.
c) For any five lines in \mathbb{P}^{2} in general position, show that there is a unique conic in \mathbb{P}^{2} that is tangent to all of them.
Hint: You can use without proof that the dual curve of the dual curve is again the original curve.

