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Exercise Sheet 1

Exercise 1. Consider the ideal J = ⟨xi − x1xi−1 : i = 2, . . . , n⟩ ⊴ K[x1, . . . , xn] and let
X = V (J) ⊆ An be its vanishing locus.

(a) Show that the projection

π : X → A1, (x1, . . . , xn) 7→ x1

is a bijection. Calculate the inverse map π−1 : A1 → X parameterizing X.

(b) Show that J is a prime ideal.
Hint: Calculate the quotient K[x1, . . . , xn]/J .

(c) Conclude that J = I(X) and compute the coordinate ring A(X).

Solution.

(a) For a fixed x1 ∈ A1, let x = (x1, x2, . . . , xn) ∈ π−1({x1}) be a point in the preimage.
Then the vanishing of the generators of J at x implies x2 − x1 · x1 = 0 and thus
x2 = x2

1. Furthermore, we have x3 − x1x2 = 0 so x3 = x3
1. Inductively, one shows

that x = (x1, x
2
1, x

3
1, . . . , x

n
1 ) is the unique point on which all generators of J vanish.

The associated inverse map to π is given by

x1 7→ (x1, x
2
1, x

3
1, . . . , x

n
1 ) .

(b) Similar to part (a), we can inductively simplify the quotient ring:

K[x1, x2, x3, . . . , xn]/⟨x2 − x2
1, x3 − x1x2, . . .⟩

∼=K[x1, x3, . . . , xn]/⟨x3 − x1x
2
1, . . .⟩ . . .

∼=K[x1, xn]/⟨xn − xn
1 ⟩ ∼= K[x1] .

Here we used the general result: for R a ring and f ∈ R the map R → R[x]/(x− f)
is an isomorphism. Since K[x1] is a domain, we conclude that J is a prime ideal.

(c) By the Nullstellensatz, we have I(X) = I(V (J)) =
√
J = J where the last equality

follows since any prime ideal is radical. By a result from the lecture, we have
A(X) = K[x1, . . . , xn]/I(X) ∼= K[x1] by the calculation in part (b).

Exercise 2. Determine the radical of the ideal J = ⟨x3
1 − x6

2, x1x2 − x3
2⟩ ⊆ C[x1, x2].

Hint : The Nullstellensatz might be useful here.

Solution. For X = V (J) we have
√
J = I(X) by the Nullstellensatz. Thus we first

calculate X. For a point x ∈ C2 we have x ∈ X implies x1x2 − x3
2 and so x2 = 0 or
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x1 = x2
2. For x2 = 0 the equation x3

1 − x6
2 shows x1 = 0 leading to the solution x = (0, 0).

On the other hand, for x1 = x2
2 the equation x3

1 − x6
2 is automatically satisfied, leading

to the solution x ∈ V (x1 − x2
2), which also contains (0, 0). Thus X = V (x1 − x2

2). We
conclude √

J = I(X) = I(V (⟨x1 − x2
2⟩)) = ⟨x1 − x2

2⟩ ,
because ⟨x1 − x2

2⟩ is prime, hence radical. Indeed, the ring K[x1, x2]/⟨x1 − x2
2⟩ ∼= K[x2] is

a domain, which proves that the ideal is prime.

Exercise 3. Let X ⊂ An be an affine variety. Show that the coordinate ring A(X) is a
field if and only if X is a single point.

Solution. We can either prove the exercise using a consequence of the Nullstellensatz, or
give a hands-on argument:
Fany argument:

The ring A(X) = K[x1, . . . , xn]/I(X) is a field if and only if I(X) is a maximal ideal.
In the lecture we saw that maximal ideals correspond to points of An, so these are the
only affine varieties with A(X) a field.
Argument ”by hand”:

If X is a point X = {a}, then any polynomial function f on X is uniquely determined
by f(a) ∈ K, and conversely those (constant) functions are polynomial. Thus A(X) = K
is a field.

Conversely, assume X is not a point. For X = ∅ we have A(∅) = {0} the zero ring,
which is not a field. On the other hand, if X has at least two distinct points a1, a2, then
there is a linear function f with f(a1) = 0, f(a2) = 1. Clearly f ̸= 0 in A(X), but f
cannot have a multiplicative inverse g since (f · g)(a1) = 0 for any possible g ∈ A(X).

Exercise 4. Let X ⊂ A3 be the union of the three coordinate axes.

(a) Compute generators for the ideal I(X).

(b) Show that I(X) cannot be generated by fewer than three elements.

Solution.

(a) We have I(X) = ⟨x1x2, x1x3, x2x3⟩ =: J . Indeed, if x = (x1, x2, x3) ∈ V (J) and
x1 = 0 then x2x3 = 0, so x2 = 0 or x3 = 0. If x1 ̸= 0 then the equations
x1x2 = x1x3 = 0 imply x2 = x3 = 0. Going through the cases, we see that
V (J) is precisely the union X of the coordinate axes. Thus by the Nullstellensatz
I(X) = I(V (J)) =

√
J . Hence it suffices to show that J is radical, which we do by

proving that R = K[x1, x2, x3]/J is reduced.

For doing this, note that any element f = f(x1, x2, x3) in the quotient ring R has a
(unique) representative by a polynomial that has no cross-terms (i.e. no monomial
is divisible by two or more of the variables). Thus we can write any element of R as

f = c+ x1f1(x1) + x2f2(x2) + x3f(x3) ∈ R

with f1, f2, f3 ∈ K[x]. Assume that fm = 0 for some m, then expanding this out,
we see that the unique representative of fm has constant term cm. The condition
fm = 0 ∈ R then implies c = 0. Looking at the other terms, we see

fm = x1 · (xm−1
1 f1(x1)

m) + x2 · (xm−1
2 f2(x2)

m) + x3 · (xm−1
3 f3(x1)

m) + J ∈ R.

This implies xm−1
i fi(xi) = 0 for i = 1, 2, 3 and thus fi = 0. Thus 0 is the only

nilpotent element in R, making it a reduced ring.
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(b) Assume I(X) = ⟨f1, f2⟩ was generated by two polynomials fi. Since the generators
of I(X) are of pure degree 2, the two elements f1, f2 satisfy that any monomial
contained in them has degree at least 2 as well. Let

V = K[x1, x2, x3]2 = SpanK{x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3}

be the span of monomials of degree exactly 2, forming a K-vector subspace of
K[x1, x2, x3]. We have V ∩ I(X) = SpanK{x1x2, x1x3, x2x3} has dimension 3. On
the other hand, the degree 2 part of an element g1f1 + g2f2 ∈ ⟨f1, f2⟩ is obtained
as the sum of the constant parts of the gi multiplied by the homogeneous degree 2
parts of fi. Thus V ∩ ⟨f1, f2⟩ is spanned by these homogeneous degree 2 parts of
f1, f2, and thus has dimension at most two. This is a contradiction to the equation
above.
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