Exercise Sheet 1

Exercise 1. Consider the ideal $J=\left\langle x_{i}-x_{1} x_{i-1}: i=2, \ldots, n\right\rangle \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ and let $X=V(J) \subseteq \mathbb{A}^{n}$ be its vanishing locus.
(a) Show that the projection

$$
\pi: X \rightarrow \mathbb{A}^{1},\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}
$$

is a bijection. Calculate the inverse map $\pi^{-1}: \mathbb{A}^{1} \rightarrow X$ parameterizing X.
(b) Show that J is a prime ideal.

Hint: Calculate the quotient $K\left[x_{1}, \ldots, x_{n}\right] / J$.
(c) Conclude that $J=I(X)$ and compute the coordinate ring $A(X)$.

Solution.

(a) For a fixed $x_{1} \in \mathbb{A}^{1}$, let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \pi^{-1}\left(\left\{x_{1}\right\}\right)$ be a point in the preimage. Then the vanishing of the generators of J at x implies $x_{2}-x_{1} \cdot x_{1}=0$ and thus $x_{2}=x_{1}^{2}$. Furthermore, we have $x_{3}-x_{1} x_{2}=0$ so $x_{3}=x_{1}^{3}$. Inductively, one shows that $x=\left(x_{1}, x_{1}^{2}, x_{1}^{3}, \ldots, x_{1}^{n}\right)$ is the unique point on which all generators of J vanish. The associated inverse map to π is given by

$$
x_{1} \mapsto\left(x_{1}, x_{1}^{2}, x_{1}^{3}, \ldots, x_{1}^{n}\right)
$$

(b) Similar to part (a), we can inductively simplify the quotient ring:

$$
\begin{aligned}
& K\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right] /\left\langle x_{2}-x_{1}^{2}, x_{3}-x_{1} x_{2}, \ldots\right\rangle \\
\cong & K\left[x_{1}, x_{3}, \ldots, x_{n}\right] /\left\langle x_{3}-x_{1} x_{1}^{2}, \ldots\right\rangle \ldots \\
\cong & K\left[x_{1}, x_{n}\right] /\left\langle x_{n}-x_{1}^{n}\right\rangle \cong K\left[x_{1}\right] .
\end{aligned}
$$

Here we used the general result: for R a ring and $f \in R$ the map $R \rightarrow R[x] /(x-f)$ is an isomorphism. Since $K\left[x_{1}\right]$ is a domain, we conclude that J is a prime ideal.
(c) By the Nullstellensatz, we have $I(X)=I(V(J))=\sqrt{J}=J$ where the last equality follows since any prime ideal is radical. By a result from the lecture, we have $A(X)=K\left[x_{1}, \ldots, x_{n}\right] / I(X) \cong K\left[x_{1}\right]$ by the calculation in part (b).

Exercise 2. Determine the radical of the ideal $J=\left\langle x_{1}^{3}-x_{2}^{6}, x_{1} x_{2}-x_{2}^{3}\right\rangle \subseteq \mathbb{C}\left[x_{1}, x_{2}\right]$.
Hint: The Nullstellensatz might be useful here.
Solution. For $X=V(J)$ we have $\sqrt{J}=I(X)$ by the Nullstellensatz. Thus we first calculate X. For a point $x \in \mathbb{C}^{2}$ we have $x \in X$ implies $x_{1} x_{2}-x_{2}^{3}$ and so $x_{2}=0$ or
$x_{1}=x_{2}^{2}$. For $x_{2}=0$ the equation $x_{1}^{3}-x_{2}^{6}$ shows $x_{1}=0$ leading to the solution $x=(0,0)$. On the other hand, for $x_{1}=x_{2}^{2}$ the equation $x_{1}^{3}-x_{2}^{6}$ is automatically satisfied, leading to the solution $x \in V\left(x_{1}-x_{2}^{2}\right)$, which also contains $(0,0)$. Thus $X=V\left(x_{1}-x_{2}^{2}\right)$. We conclude

$$
\sqrt{J}=I(X)=I\left(V\left(\left\langle x_{1}-x_{2}^{2}\right\rangle\right)\right)=\left\langle x_{1}-x_{2}^{2}\right\rangle
$$

because $\left\langle x_{1}-x_{2}^{2}\right\rangle$ is prime, hence radical. Indeed, the ring $K\left[x_{1}, x_{2}\right] /\left\langle x_{1}-x_{2}^{2}\right\rangle \cong K\left[x_{2}\right]$ is a domain, which proves that the ideal is prime.
Exercise 3. Let $X \subset \mathbb{A}^{n}$ be an affine variety. Show that the coordinate ring $A(X)$ is a field if and only if X is a single point.

Solution. We can either prove the exercise using a consequence of the Nullstellensatz, or give a hands-on argument:

Fany argument:

The ring $A(X)=K\left[x_{1}, \ldots, x_{n}\right] / I(X)$ is a field if and only if $I(X)$ is a maximal ideal. In the lecture we saw that maximal ideals correspond to points of \mathbb{A}^{n}, so these are the only affine varieties with $A(X)$ a field.
Argument "by hand":
If X is a point $X=\{a\}$, then any polynomial function f on X is uniquely determined by $f(a) \in K$, and conversely those (constant) functions are polynomial. Thus $A(X)=K$ is a field.

Conversely, assume X is not a point. For $X=\emptyset$ we have $A(\emptyset)=\{0\}$ the zero ring, which is not a field. On the other hand, if X has at least two distinct points a_{1}, a_{2}, then there is a linear function f with $f\left(a_{1}\right)=0, f\left(a_{2}\right)=1$. Clearly $f \neq 0$ in $A(X)$, but f cannot have a multiplicative inverse g since $(f \cdot g)\left(a_{1}\right)=0$ for any possible $g \in A(X)$.
Exercise 4. Let $X \subset \mathbb{A}^{3}$ be the union of the three coordinate axes.
(a) Compute generators for the ideal $I(X)$.
(b) Show that $I(X)$ cannot be generated by fewer than three elements.

Solution.

(a) We have $I(X)=\left\langle x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\rangle=$: J. Indeed, if $x=\left(x_{1}, x_{2}, x_{3}\right) \in V(J)$ and $x_{1}=0$ then $x_{2} x_{3}=0$, so $x_{2}=0$ or $x_{3}=0$. If $x_{1} \neq 0$ then the equations $x_{1} x_{2}=x_{1} x_{3}=0$ imply $x_{2}=x_{3}=0$. Going through the cases, we see that $V(J)$ is precisely the union X of the coordinate axes. Thus by the Nullstellensatz $I(X)=I(V(J))=\sqrt{J}$. Hence it suffices to show that J is radical, which we do by proving that $R=K\left[x_{1}, x_{2}, x_{3}\right] / J$ is reduced.
For doing this, note that any element $f=f\left(x_{1}, x_{2}, x_{3}\right)$ in the quotient ring R has a (unique) representative by a polynomial that has no cross-terms (i.e. no monomial is divisible by two or more of the variables). Thus we can write any element of R as

$$
f=c+x_{1} f_{1}\left(x_{1}\right)+x_{2} f_{2}\left(x_{2}\right)+x_{3} f\left(x_{3}\right) \in R
$$

with $f_{1}, f_{2}, f_{3} \in K[x]$. Assume that $f^{m}=0$ for some m, then expanding this out, we see that the unique representative of f^{m} has constant term c^{m}. The condition $f^{m}=0 \in R$ then implies $c=0$. Looking at the other terms, we see

$$
f^{m}=x_{1} \cdot\left(x_{1}^{m-1} f_{1}\left(x_{1}\right)^{m}\right)+x_{2} \cdot\left(x_{2}^{m-1} f_{2}\left(x_{2}\right)^{m}\right)+x_{3} \cdot\left(x_{3}^{m-1} f_{3}\left(x_{1}\right)^{m}\right)+J \in R .
$$

This implies $x_{i}^{m-1} f_{i}\left(x_{i}\right)=0$ for $i=1,2,3$ and thus $f_{i}=0$. Thus 0 is the only nilpotent element in R, making it a reduced ring.
(b) Assume $I(X)=\left\langle f_{1}, f_{2}\right\rangle$ was generated by two polynomials f_{i}. Since the generators of $I(X)$ are of pure degree 2 , the two elements f_{1}, f_{2} satisfy that any monomial contained in them has degree at least 2 as well. Let

$$
V=K\left[x_{1}, x_{2}, x_{3}\right]_{2}=\operatorname{Span}_{K}\left\{x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{2}, x_{2} x_{3}, x_{3}^{2}\right\}
$$

be the span of monomials of degree exactly 2 , forming a K-vector subspace of $K\left[x_{1}, x_{2}, x_{3}\right]$. We have $V \cap I(X)=\operatorname{Span}_{K}\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$ has dimension 3. On the other hand, the degree 2 part of an element $g_{1} f_{1}+g_{2} f_{2} \in\left\langle f_{1}, f_{2}\right\rangle$ is obtained as the sum of the constant parts of the g_{i} multiplied by the homogeneous degree 2 parts of f_{i}. Thus $V \cap\left\langle f_{1}, f_{2}\right\rangle$ is spanned by these homogeneous degree 2 parts of f_{1}, f_{2}, and thus has dimension at most two. This is a contradiction to the equation above.

