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Exercise Sheet 10

Exercise 1. As in Sheet 9, Exercise 3, let U ⊆ P(
4+5
4 )−1 = P125 be the set of all smooth

(3-dimensional) hypersurfaces of degree 5 in P4.

a) Using the Jacobi criterion, show that the incidence correspondence

M := {(X,L) ∈ U ×G(2, 5) : L is a line contained in X}

is smooth of dimension 125, i.e., of the same dimension as U .
Hint: Reduce to showing smoothness when L = Lin(e1, e2). Then for X = Vp(fc)
with

fc = c0x
5
0 + c1x

4
0x1 + . . .+ c5x

5
1 + c6x

4
0x2 + . . .

apply the Jacobi criterion for the partial derivatives along the variables c0, . . . , c5.

b) Although (a) suggests that a smooth hypersurface of degree 5 in P4 contains only
finitely many lines, show that the Fermat hypersurface V (x5

0+· · ·+x5
4) ⊂ P4 contains

infinitely many lines.
Hint: Consider lines of the form L = {(a0s : a1s : a2t : a3t : a4t) : (s : t) ∈ P1} for
suitable a0, . . . , a4 ∈ C.)

Solution.

a) As in the proof of [Gathmann, Lemma 11.4] we can use the action of PGL(5, K) on
P4 to ensure that L = Lin(e1, e2), so that we obtain affine coordinates(

1 0 a2 a3 a4
0 1 b2 b3 b4

)
onG(2, 5) in a neighborhood of L. For coordinates (c, a, b) = ((cα)α, a2, . . . , a4, b2, . . . , b4)
on U ×G(2, 5) we have

(c, a, b) ∈ M ⇐⇒ fc(s(1, 0, a2, a3, a4) + t(0, 1, b2, b3, b4)) = 0 for all s, t .

The polynomial on the right is homogeneous of degree 5 in s, t, so as in the proof
of [Gathmann, Lemma 11.4] this is equivalent to the vanishing of the six coefficient
functions Fi(c, a, b) of s

it5−i for i = 0, . . . , 5. The Jacobi matrix J is now a 6×(125+
6)-matrix, and we want to show that it is invertible by choosing six of its columns
and calculating that the resulting 6× 6-matrix has full rank. In the previous proof
in the script, the last 6 rows (with partial derivatives along the components of a, b)
were chosen. It follows from the example in part b) that this can no longer work
here, since M is no longer locally the graph of a function U → G(2, 5) (since there
can be X ∈ U having infinitely many points (X,L) ∈ M lying over it).
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Instead, as suggested by the hint we want to take the partial derivatives along the
components c0, . . . , c5 of c.

1 Expanding the term fc(s(1, 0, a2, a3, a4)+t(0, 1, b2, b3, b4))
above, we see that it equals

c0s
5 + c1s

4t+ . . .+ c5t
5 +R(c6, . . . , c125, a, b, s, t) ,

for some polynomial R. Extracting the coefficient Fi of sit5−i we see Fi = ci +
Ri(c6, . . . , c125, a, b) for suitable polynomials Ri. Calculating the partial derivatives
along c0, . . . , c5 we find

∂Fi

∂cj
= δij ,

where δij is the Kronecker delta. Thus in fact the first 6 columns of the matrix J
are just the identity matrix, and thus invertible.

b) Plugging in the suggested lines into the equation of the Fermat hypersurface, we
find the condition

(a0s)
5 + (a1s)

5 + (a2t)
5 + (a3t)

5 + (a4t)
5 = 0 ∈ C[s, t]

⇐⇒ a50 + a51 = 0 and a52 + a53 + a54 = 0

These two equations cut out a surface of points a ∈ P4 satisfying this, and thus
there are infinitely many lines.

Exercise 2. Find an example of the following, or prove that it does not exist:

a) an irreducible affine scheme SpecR such that R is not an integral domain;

b) a point of Spec(R[x1, x2]/⟨x2
1 + x2

2 + 1⟩) with residue field R;

c) two affine schemes SpecR and SpecS with R ⊆ S and dim(SpecR) > dim(SpecS);

d) an affine scheme of dimension 1 with exactly two points.

Solution.

a) Let R = K[x]/⟨x2⟩, then this is a local ring for which the nilradical
√

⟨0⟩ = ⟨x⟩
is also maximal, making it the only prime ideal of R. Thus Spec(R) = {⟨x⟩} is
a one-point space and thus irreducible. On the other hand, the ring R is not an
integral domain since x ̸= 0 but x · x = 0 ∈ R.

b) Let R = R[x1, x2]/⟨x2
1 + x2

2 +1⟩ and assume we have p ⊆ R prime with residue field
R, i.e. Frac(R/p) = R so that we obtain a ring homomorphism φ : R → R. Let
a1 = φ(x1), a2 = φ(x2) ∈ R be the images of the two coordinate functions. Then

0 = φ(x2
1 + x2

2 + 1) = φ(x1)
2 + φ(x2)

2 + 1 = a21 + a22 + 1 ∈ R .

But such elements a1, a2 ∈ R cannot exist since a21 + a22 ≥ 0. Thus no such point
p ∈ Spec(R) can exist.

1Here we work in some chart on the projective space P125 where one of the other coordinates cj was
set to 1.
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c) Take R = Z ⊆ S = Q. Since Q is a field, it has unique prime ideal ⟨0⟩, so Spec(S) =
{⟨0⟩} is a one-element set of dimension 0. On the other hand, in Z we have a strict
inclusion of prime ideals ⟨0⟩ ⊊ ⟨2⟩ leading to a chain V (2) ⊊ V (0) = Spec(R) so
that dimSpec(R) ≥ 1 (and in fact dimSpec(R) = 1).

d) Take R = Z⟨2⟩ be the localization of the integers at the prime ideal ⟨2⟩ (which is
different from the localization Z2 at the element 2!). From commutative algebra
we know that the prime ideals of R are in correspondence to the prime ideals of Z
contained in ⟨2⟩, which are precisely

Spec(R) = {⟨2⟩, ⟨0⟩} .

Thus Spec(R) has precisely two points, and the inclusion {⟨2⟩} ⊆ Spec(R) is the
unique maximal chain of irreducible closed subsets, and since it has length 1 we
know dimSpec(R) = 1.

Exercise 3.

a) Let R = A(X) be the coordinate ring of an affine variety X over an algebraically
closed field. Show that the set of all closed points is dense in SpecR (which means
by definition that every non-empty open subset of SpecR contains a closed point).

b) In contrast to (a), however, show by example that on a general affine scheme the
set of all closed points need not be dense.

Solution.

a) Let U ⊆ Spec(R) be a non-empty open subset with closed complement V (J) for
J ⊆ R an ideal. Assume that all closed points of Spec(R) are contained in V (J).
We have seen (by the Nullstellensatz) that the closed points, corresponding to the
maximal ideals of R, are exactly given by ma = I({a}) for a ∈ X. The containment
ma ∈ V (J) is equivalent to J ⊆ ma, meaning that all functions f ∈ J vanish at a.
Thus for all f ∈ J we have that f vanishes at any point a ∈ X and thus f ∈ I(X).
By the Nullstellensatz we have I(X) = I(V (⟨0⟩)) =

√
⟨0⟩ = ⟨0⟩, using that R is

reduced. Thus J = ⟨0⟩, giving a contradiction since U = Spec(R) \ V (0) = ∅.

b) For the example of R = Z⟨2⟩ above we have that ⟨2⟩ is the unique closed point, but
its closure is not everything (it’s just {⟨2⟩} again).
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