Exercise Sheet 10

Exercise 1. As in Sheet 9, Exercise 3, let $U \subseteq \mathbb{P}^{\binom{4+5}{4}^{-1}=\mathbb{P}^{125} \text { be the set of all smooth }}$ (3-dimensional) hypersurfaces of degree 5 in \mathbb{P}^{4}.
a) Using the Jacobi criterion, show that the incidence correspondence

$$
M:=\{(X, L) \in U \times G(2,5): L \text { is a line contained in } X\}
$$

is smooth of dimension 125, i.e., of the same dimension as U.
Hint: Reduce to showing smoothness when $L=\operatorname{Lin}\left(e_{1}, e_{2}\right)$. Then for $X=V_{p}\left(f_{c}\right)$ with

$$
f_{c}=c_{0} x_{0}^{5}+c_{1} x_{0}^{4} x_{1}+\ldots+c_{5} x_{1}^{5}+c_{6} x_{0}^{4} x_{2}+\ldots
$$

apply the Jacobi criterion for the partial derivatives along the variables c_{0}, \ldots, c_{5}.
b) Although (a) suggests that a smooth hypersurface of degree 5 in \mathbb{P}^{4} contains only finitely many lines, show that the Fermat hypersurface $V\left(x_{0}^{5}+\cdots+x_{4}^{5}\right) \subset \mathbb{P}^{4}$ contains infinitely many lines.
Hint: Consider lines of the form $L=\left\{\left(a_{0} s: a_{1} s: a_{2} t: a_{3} t: a_{4} t\right):(s: t) \in \mathbb{P}^{1}\right\}$ for suitable $a_{0}, \ldots, a_{4} \in \mathbb{C}$.)

Solution.

a) As in the proof of [Gathmann, Lemma 11.4] we can use the action of $\operatorname{PGL}(5, K)$ on \mathbb{P}^{4} to ensure that $L=\operatorname{Lin}\left(e_{1}, e_{2}\right)$, so that we obtain affine coordinates

$$
\left(\begin{array}{ccccc}
1 & 0 & a_{2} & a_{3} & a_{4} \\
0 & 1 & b_{2} & b_{3} & b_{4}
\end{array}\right)
$$

on $G(2,5)$ in a neighborhood of L. For coordinates $(c, a, b)=\left(\left(c_{\alpha}\right)_{\alpha}, a_{2}, \ldots, a_{4}, b_{2}, \ldots, b_{4}\right)$ on $U \times G(2,5)$ we have

$$
(c, a, b) \in M \Longleftrightarrow f_{c}\left(s\left(1,0, a_{2}, a_{3}, a_{4}\right)+t\left(0,1, b_{2}, b_{3}, b_{4}\right)\right)=0 \text { for all } s, t
$$

The polynomial on the right is homogeneous of degree 5 in s, t, so as in the proof of [Gathmann, Lemma 11.4] this is equivalent to the vanishing of the six coefficient functions $F_{i}(c, a, b)$ of $s^{i} t^{5-i}$ for $i=0, \ldots, 5$. The Jacobi matrix J is now a $6 \times(125+$ 6)-matrix, and we want to show that it is invertible by choosing six of its columns and calculating that the resulting 6×6-matrix has full rank. In the previous proof in the script, the last 6 rows (with partial derivatives along the components of a, b) were chosen. It follows from the example in part b) that this can no longer work here, since M is no longer locally the graph of a function $U \rightarrow G(2,5)$ (since there can be $X \in U$ having infinitely many points $(X, L) \in M$ lying over it).

Instead, as suggested by the hint we want to take the partial derivatives along the components c_{0}, \ldots, c_{5} of c Expanding the term $f_{c}\left(s\left(1,0, a_{2}, a_{3}, a_{4}\right)+t\left(0,1, b_{2}, b_{3}, b_{4}\right)\right)$ above, we see that it equals

$$
c_{0} s^{5}+c_{1} s^{4} t+\ldots+c_{5} t^{5}+R\left(c_{6}, \ldots, c_{125}, a, b, s, t\right)
$$

for some polynomial R. Extracting the coefficient F_{i} of $s^{i} t^{5-i}$ we see $F_{i}=c_{i}+$ $R_{i}\left(c_{6}, \ldots, c_{125}, a, b\right)$ for suitable polynomials R_{i}. Calculating the partial derivatives along c_{0}, \ldots, c_{5} we find

$$
\frac{\partial F_{i}}{\partial c_{j}}=\delta_{j}^{i}
$$

where δ_{j}^{i} is the Kronecker delta. Thus in fact the first 6 columns of the matrix J are just the identity matrix, and thus invertible.
b) Plugging in the suggested lines into the equation of the Fermat hypersurface, we find the condition

$$
\begin{aligned}
& \left(a_{0} s\right)^{5}+\left(a_{1} s\right)^{5}+\left(a_{2} t\right)^{5}+\left(a_{3} t\right)^{5}+\left(a_{4} t\right)^{5}=0 \in \mathbb{C}[s, t] \\
\Longleftrightarrow & a_{0}^{5}+a_{1}^{5}=0 \text { and } a_{2}^{5}+a_{3}^{5}+a_{4}^{5}=0
\end{aligned}
$$

These two equations cut out a surface of points $a \in \mathbb{P}^{4}$ satisfying this, and thus there are infinitely many lines.

Exercise 2. Find an example of the following, or prove that it does not exist:
a) an irreducible affine scheme $\operatorname{Spec} R$ such that R is not an integral domain;
b) a point of $\operatorname{Spec}\left(\mathbb{R}\left[x_{1}, x_{2}\right] /\left\langle x_{1}^{2}+x_{2}^{2}+1\right\rangle\right)$ with residue field \mathbb{R};
c) two affine schemes $\operatorname{Spec} R$ and $\operatorname{Spec} S$ with $R \subseteq S$ and $\operatorname{dim}(\operatorname{Spec} R)>\operatorname{dim}(\operatorname{Spec} S)$;
d) an affine scheme of dimension 1 with exactly two points.

Solution.

a) Let $R=K[x] /\left\langle x^{2}\right\rangle$, then this is a local ring for which the nilradical $\sqrt{\langle 0\rangle}=\langle x\rangle$ is also maximal, making it the only prime ideal of R. Thus $\operatorname{Spec}(R)=\{\langle x\rangle\}$ is a one-point space and thus irreducible. On the other hand, the ring R is not an integral domain since $x \neq 0$ but $x \cdot x=0 \in R$.
b) Let $R=\mathbb{R}\left[x_{1}, x_{2}\right] /\left\langle x_{1}^{2}+x_{2}^{2}+1\right\rangle$ and assume we have $p \subseteq R$ prime with residue field \mathbb{R}, i.e. $\operatorname{Frac}(R / p)=\mathbb{R}$ so that we obtain a ring homomorphism $\varphi: R \rightarrow \mathbb{R}$. Let $a_{1}=\varphi\left(x_{1}\right), a_{2}=\varphi\left(x_{2}\right) \in \mathbb{R}$ be the images of the two coordinate functions. Then

$$
0=\varphi\left(x_{1}^{2}+x_{2}^{2}+1\right)=\varphi\left(x_{1}\right)^{2}+\varphi\left(x_{2}\right)^{2}+1=a_{1}^{2}+a_{2}^{2}+1 \in \mathbb{R} .
$$

But such elements $a_{1}, a_{2} \in \mathbb{R}$ cannot exist since $a_{1}^{2}+a_{2}^{2} \geq 0$. Thus no such point $p \in \operatorname{Spec}(R)$ can exist.

[^0]c) Take $R=\mathbb{Z} \subseteq S=\mathbb{Q}$. Since \mathbb{Q} is a field, it has unique prime ideal $\langle 0\rangle$, so $\operatorname{Spec}(S)=$ $\{\langle 0\rangle\}$ is a one-element set of dimension 0 . On the other hand, in \mathbb{Z} we have a strict inclusion of prime ideals $\langle 0\rangle \subsetneq\langle 2\rangle$ leading to a chain $V(2) \subsetneq V(0)=\operatorname{Spec}(R)$ so that $\operatorname{dim} \operatorname{Spec}(R) \geq 1$ (and in fact $\operatorname{dim} \operatorname{Spec}(R)=1$).
d) Take $R=\mathbb{Z}_{\langle 2\rangle}$ be the localization of the integers at the prime ideal $\langle 2\rangle$ (which is different from the localization \mathbb{Z}_{2} at the element 2!). From commutative algebra we know that the prime ideals of R are in correspondence to the prime ideals of \mathbb{Z} contained in $\langle 2\rangle$, which are precisely
$$
\operatorname{Spec}(R)=\{\langle 2\rangle,\langle 0\rangle\} .
$$

Thus $\operatorname{Spec}(R)$ has precisely two points, and the inclusion $\{\langle 2\rangle\} \subseteq \operatorname{Spec}(R)$ is the unique maximal chain of irreducible closed subsets, and since it has length 1 we know $\operatorname{dim} \operatorname{Spec}(R)=1$.

Exercise 3.

a) Let $R=A(X)$ be the coordinate ring of an affine variety X over an algebraically closed field. Show that the set of all closed points is dense in Spec R (which means by definition that every non-empty open subset of $\operatorname{Spec} R$ contains a closed point).
b) In contrast to (a), however, show by example that on a general affine scheme the set of all closed points need not be dense.

Solution.

a) Let $U \subseteq \operatorname{Spec}(R)$ be a non-empty open subset with closed complement $V(J)$ for $J \subseteq R$ an ideal. Assume that all closed points of $\operatorname{Spec}(R)$ are contained in $V(J)$. We have seen (by the Nullstellensatz) that the closed points, corresponding to the maximal ideals of R, are exactly given by $m_{a}=I(\{a\})$ for $a \in X$. The containment $m_{a} \in V(J)$ is equivalent to $J \subseteq m_{a}$, meaning that all functions $f \in J$ vanish at a. Thus for all $f \in J$ we have that f vanishes at any point $a \in X$ and thus $f \in I(X)$. By the Nullstellensatz we have $I(X)=I(V(\langle 0\rangle))=\sqrt{\langle 0\rangle}=\langle 0\rangle$, using that R is reduced. Thus $J=\langle 0\rangle$, giving a contradiction since $U=\operatorname{Spec}(R) \backslash V(0)=\emptyset$.
b) For the example of $R=\mathbb{Z}_{\langle 2\rangle}$ above we have that $\langle 2\rangle$ is the unique closed point, but its closure is not everything (it's just $\{\langle 2\rangle\}$ again).

[^0]: ${ }^{1}$ Here we work in some chart on the projective space \mathbb{P}^{125} where one of the other coordinates c_{j} was set to 1 .

