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Exercise Sheet 11

Exercise 1. Let R be a ring. Prove that the affine scheme SpecR is disconnected if
and only if R ∼= S × T for two non-zero rings S and T .

Solution. First, assume that X = Spec(R) is disconnected, decomposing as X = X1 ⊔X2

for two open disjoint subsets X1, X2 ⊆ X. Then we claim that

R = OX(X) = OX(X1)︸ ︷︷ ︸
=:S

×OX(X2)︸ ︷︷ ︸
=:T

Indeed, a regular function φ = (φp)p∈X on X is uniquely determined by its restrictions
φ1 = (φp)p∈X1 ∈ S and φ2 = (φp)p∈X2 ∈ T , and conversely any such pair gives rise to a
function φ as above. The reason is that the condition on regular functions is local, and
thus can be checked on the open coverX = X1⊔X2, where it restricts to the corresponding
conditions on regular functions for X1 and X2.

Conversely, assume that R ∼= S × T , then we claim that SpecR ∼= SpecS ⊔ SpecT .
Since S, T are nonzero rings, the ideal ⟨0⟩ ⊆ S is a proper ideal and thus contained in
some maximal (and hence prime) ideal of S. Thus S (and T ) have non-empty spectrum,
finishing the proof.

To show the claim, consider the two elements f = (1, 0), g = (0, 1) ∈ S × T . Then we
claim that we have isomorphisms

S
∼−→ (S × T )f , T

∼−→ (S × T )g and {0} ∼−→ (S × T )fg ,

where e.g. the first map is given by s 7→ (s, 0) with inverse given by (s, t)/fm 7→ s. To
check that these are isomorphic, one just observes that (s, t)/fm = (s, 0) ∈ (S×T )f since

f · ((s, t)− (s, 0) · fm) = (1, 0) · ((s, t)− (s, 0) · (1m, 0m)) = (1, 0) · (0, t) = (0, 0) ∈ S × T .

The other proofs work similar. This shows that the two open sets D(f), D(g) ⊆ Spec(R)
are isomorphic to Spec((S × T )f ) = Spec(S) and Spec(T ) and that their intersection
D(fg) = D(0) is empty. This proves

Spec(R) = D(f) ⊔D(g) ∼= Spec(S)× Spec(T ) .

Exercise 2. For n ∈ N>0, an n-fold point over an algebraically closed field K is an affine
scheme SpecR that contains only one point, and such that R is a K-algebra of vector
space dimension n over K.

a) Show that every single point over K is isomorphic to SpecK.

b) Show that every double point over K is isomorphic to SpecK[x]/⟨x2⟩.
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c) Is part b) correct without the assumption that K is algebraically closed?

d) Find two non-isomorphic triple points over an algebraically closed field K. Here
we mean: there is no isomorphism SpecR1

∼−→ SpecR2 coming from a K-algebra
homomorphism R2 → R1. Can you describe them geometrically?

Solution. By definition, a K-algebra R is a ring R together with a ring homomorphism
φ : K → R. The kernel of φ is an ideal in K, and so it must be {0} or all of K. Since ring
homomorphisms send 1 to 1, the second possibility is excluded (for R ̸= {0}), and so φ is
injective. Using it to define a K-vector space structure on R, it automatically becomes a
K-linear map.

a) By the preparatory comments, we have that R is a one-dimensional vector space,
containing φ(K) ∼= K and thus φ in fact defines an isomorphism K ∼= R.

b) We have 1 ̸= 0 ∈ R and so we can enrich it to a basis 1, a of R as a K-vector space.
Since the product in R is K-bilinear, it is uniquely determined by the products of
the basis elements with themselves. The products 1 · 1 = 1 and 1 · a = a · 1 = a
are automatic. Let r, s ∈ K be such that a · a = r · 1 + s · a, which are uniquely
determined since 1, a are a K-vector space basis of R. Then clearly

R ∼= K[a]/⟨a2 − (r + sa)⟩ .

However, since K is algebraically closed, the polynomial f = x2−sx−r decomposes
into linear factors f = (x − u1) · (x − u2) for u1, u2 ∈ K. If u1 ̸= u2, then the ring
R above has two different maximal ideals (spanned by a − u1 and a − u2), giving
a contradiction to SpecR having only one point. Thus u1 = u2 = u ∈ K and
a2 − sa− r = (a− u)2. Setting x = a− u we have R ∼= K[x]/⟨x2⟩.

c) No: take K = R and R = C, then R is a K-algebra with dimK R = 2 but C is
reduced, whereas R[x]/⟨x2⟩ is non-reduced.

d) We can take R1 = K[x]/⟨x3⟩ and R2 = K[x, y]/⟨x2, xy, y2⟩. They have unique
prime ideals p1 = ⟨x⟩ and p2 = ⟨x, y⟩. The Zariski cotangent spaces are p1/p

2
1
∼=

⟨x⟩/⟨x2⟩ ∼= K and ⟨x, y⟩/⟨x2, xy, y2⟩ ∼= K2 and thus of different dimensions over
K. Alternatively, we can just see that p21 ̸= 0 but p22 = 0. This shows that R1, R2

cannot be isomorphic as K-algebras.
We can see SpecR1 as a fat point stretched along one dimension, whereas SpecR2

is stretched equally in two dimensions.

Exercise 3.

a) Let K be a field. Show that SpecK[x]/⟨x3 − x2⟩ ∼= SpecK[x]/⟨x2⟩ ⊔ SpecK.

b) For R = K[x, y] calculate the scheme-theoretic intersection X1∩X2 of the two affine
subschemes

X1 = SpecR/⟨x2 + y2 − 1⟩ → SpecR and X2 = SpecR/⟨y − x2 + 1⟩ → SpecR .

How many connected components does X1 ∩X2 have?

Solution.
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a) The two ideals I = ⟨x2⟩ and J = ⟨x− 1⟩ in K[x] are coprime since

1 = −(x− 1) · (x+ 1) + x2 ∈ I + J .

Also since K[x] is a unique factorization domain, their intersection is given by
I ∩ J = ⟨x2 · (x− 1)⟩. Thus by the Chinese remainder theorem we have

K[x]/⟨x3 − x2⟩ ∼= K[x]/⟨x2⟩ ×K[x]/⟨x− 1⟩︸ ︷︷ ︸
∼=K

.

Using the result from Exercise 1 (that products of rings give disjoint unions of affine
schemes) we conclude the claim.

b) By definition, the scheme-theoretic intersection X1 ∩ X2 is cut out by the sum of
the ideals, and so given by

⟨x2 + y2 − 1, y − x2 + 1⟩ = ⟨x2 + (x2 − 1)2 − 1︸ ︷︷ ︸
=x4−x2=x2(x−1)(x+1)

, y − x2 + 1⟩

Using the second generator to eliminate the variable y = x2 − 1 from K[x, y], we
thus have

X1 ∩X2
∼= SpecK[x]/⟨x2(x− 1)(x+ 1)⟩ .

By the Chinese remainder theorem again we have two cases:

• for char(K) ̸= 2 we have 1 ̸= −1 and

X1 ∩X2
∼= SpecK[x]/⟨x2⟩ ⊔ SpecK[x]/⟨x− 1⟩︸ ︷︷ ︸

∼=SpecK

⊔ SpecK[x]/⟨x+ 1⟩︸ ︷︷ ︸
∼=SpecK

is the disjoint union of one double point and two simple points.

• for char(K) = 2 we have 1 = −1 and

X1 ∩X2
∼= SpecK[x]/⟨x2⟩ ⊔ SpecK[x]/⟨(x− 1)2⟩︸ ︷︷ ︸

∼=SpecK[y]/⟨y2⟩

is the disjoint union of two double points.
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