Exercise Sheet 11

Exercise 1. Let R be a ring. Prove that the affine scheme $\operatorname{Spec} R$ is disconnected if and only if $R \cong S \times T$ for two non-zero rings S and T.

Solution. First, assume that $X=\operatorname{Spec}(R)$ is disconnected, decomposing as $X=X_{1} \sqcup X_{2}$ for two open disjoint subsets $X_{1}, X_{2} \subseteq X$. Then we claim that

$$
R=\mathcal{O}_{X}(X)=\underbrace{\mathcal{O}_{X}\left(X_{1}\right)}_{=: S} \times \underbrace{\mathcal{O}_{X}\left(X_{2}\right)}_{=: T}
$$

Indeed, a regular function $\varphi=\left(\varphi_{p}\right)_{p \in X}$ on X is uniquely determined by its restrictions $\varphi_{1}=\left(\varphi_{p}\right)_{p \in X_{1}} \in S$ and $\varphi_{2}=\left(\varphi_{p}\right)_{p \in X_{2}} \in T$, and conversely any such pair gives rise to a function φ as above. The reason is that the condition on regular functions is local, and thus can be checked on the open cover $X=X_{1} \sqcup X_{2}$, where it restricts to the corresponding conditions on regular functions for X_{1} and X_{2}.

Conversely, assume that $R \cong S \times T$, then we claim that $\operatorname{Spec} R \cong \operatorname{Spec} S \sqcup \operatorname{Spec} T$. Since S, T are nonzero rings, the ideal $\langle 0\rangle \subseteq S$ is a proper ideal and thus contained in some maximal (and hence prime) ideal of S. Thus S (and T) have non-empty spectrum, finishing the proof.

To show the claim, consider the two elements $f=(1,0), g=(0,1) \in S \times T$. Then we claim that we have isomorphisms

$$
S \xrightarrow{\sim}(S \times T)_{f}, T \xrightarrow{\sim}(S \times T)_{g} \text { and }\{0\} \xrightarrow{\sim}(S \times T)_{f g},
$$

where e.g. the first map is given by $s \mapsto(s, 0)$ with inverse given by $(s, t) / f^{m} \mapsto s$. To check that these are isomorphic, one just observes that $(s, t) / f^{m}=(s, 0) \in(S \times T)_{f}$ since
$f \cdot\left((s, t)-(s, 0) \cdot f^{m}\right)=(1,0) \cdot\left((s, t)-(s, 0) \cdot\left(1^{m}, 0^{m}\right)\right)=(1,0) \cdot(0, t)=(0,0) \in S \times T$.
The other proofs work similar. This shows that the two open sets $D(f), D(g) \subseteq \operatorname{Spec}(R)$ are isomorphic to $\operatorname{Spec}\left((S \times T)_{f}\right)=\operatorname{Spec}(S)$ and $\operatorname{Spec}(T)$ and that their intersection $D(f g)=D(0)$ is empty. This proves

$$
\operatorname{Spec}(R)=D(f) \sqcup D(g) \cong \operatorname{Spec}(S) \times \operatorname{Spec}(T)
$$

Exercise 2. For $n \in \mathbb{N}_{>0}$, an n-fold point over an algebraically closed field K is an affine scheme $\operatorname{Spec} R$ that contains only one point, and such that R is a K-algebra of vector space dimension n over K.
a) Show that every single point over K is isomorphic to $\operatorname{Spec} K$.
b) Show that every double point over K is isomorphic to $\operatorname{Spec} K[x] /\left\langle x^{2}\right\rangle$.
c) Is part b) correct without the assumption that K is algebraically closed?
d) Find two non-isomorphic triple points over an algebraically closed field K. Here we mean: there is no isomorphism $\operatorname{Spec} R_{1} \xrightarrow{\sim} \operatorname{Spec} R_{2}$ coming from a K-algebra homomorphism $R_{2} \rightarrow R_{1}$. Can you describe them geometrically?

Solution. By definition, a K-algebra R is a ring R together with a ring homomorphism $\varphi: K \rightarrow R$. The kernel of φ is an ideal in K, and so it must be $\{0\}$ or all of K. Since ring homomorphisms send 1 to 1 , the second possibility is excluded (for $R \neq\{0\}$), and so φ is injective. Using it to define a K-vector space structure on R, it automatically becomes a K-linear map.
a) By the preparatory comments, we have that R is a one-dimensional vector space, containing $\varphi(K) \cong K$ and thus φ in fact defines an isomorphism $K \cong R$.
b) We have $1 \neq 0 \in R$ and so we can enrich it to a basis $1, a$ of R as a K-vector space. Since the product in R is K-bilinear, it is uniquely determined by the products of the basis elements with themselves. The products $1 \cdot 1=1$ and $1 \cdot a=a \cdot 1=a$ are automatic. Let $r, s \in K$ be such that $a \cdot a=r \cdot 1+s \cdot a$, which are uniquely determined since $1, a$ are a K-vector space basis of R. Then clearly

$$
R \cong K[a] /\left\langle a^{2}-(r+s a)\right\rangle .
$$

However, since K is algebraically closed, the polynomial $f=x^{2}-s x-r$ decomposes into linear factors $f=\left(x-u_{1}\right) \cdot\left(x-u_{2}\right)$ for $u_{1}, u_{2} \in K$. If $u_{1} \neq u_{2}$, then the ring R above has two different maximal ideals (spanned by $a-u_{1}$ and $a-u_{2}$), giving a contradiction to $\operatorname{Spec} R$ having only one point. Thus $u_{1}=u_{2}=u \in K$ and $a^{2}-s a-r=(a-u)^{2}$. Setting $x=a-u$ we have $R \cong K[x] /\left\langle x^{2}\right\rangle$.
c) No: take $K=\mathbb{R}$ and $R=\mathbb{C}$, then R is a K-algebra with $\operatorname{dim}_{K} R=2$ but \mathbb{C} is reduced, whereas $\mathbb{R}[x] /\left\langle x^{2}\right\rangle$ is non-reduced.
d) We can take $R_{1}=K[x] /\left\langle x^{3}\right\rangle$ and $R_{2}=K[x, y] /\left\langle x^{2}, x y, y^{2}\right\rangle$. They have unique prime ideals $p_{1}=\langle x\rangle$ and $p_{2}=\langle x, y\rangle$. The Zariski cotangent spaces are $p_{1} / p_{1}^{2} \cong$ $\langle x\rangle /\left\langle x^{2}\right\rangle \cong K$ and $\langle x, y\rangle /\left\langle x^{2}, x y, y^{2}\right\rangle \cong K^{2}$ and thus of different dimensions over K. Alternatively, we can just see that $p_{1}^{2} \neq 0$ but $p_{2}^{2}=0$. This shows that R_{1}, R_{2} cannot be isomorphic as K-algebras.
We can see $\operatorname{Spec} R_{1}$ as a fat point stretched along one dimension, whereas $\operatorname{Spec} R_{2}$ is stretched equally in two dimensions.

Exercise 3.

a) Let K be a field. Show that $\operatorname{Spec} K[x] /\left\langle x^{3}-x^{2}\right\rangle \cong \operatorname{Spec} K[x] /\left\langle x^{2}\right\rangle \sqcup \operatorname{Spec} K$.
b) For $R=K[x, y]$ calculate the scheme-theoretic intersection $X_{1} \cap X_{2}$ of the two affine subschemes

$$
X_{1}=\operatorname{Spec} R /\left\langle x^{2}+y^{2}-1\right\rangle \rightarrow \operatorname{Spec} R \text { and } X_{2}=\operatorname{Spec} R /\left\langle y-x^{2}+1\right\rangle \rightarrow \operatorname{Spec} R .
$$

How many connected components does $X_{1} \cap X_{2}$ have?

Solution.

a) The two ideals $I=\left\langle x^{2}\right\rangle$ and $J=\langle x-1\rangle$ in $K[x]$ are coprime since

$$
1=-(x-1) \cdot(x+1)+x^{2} \in I+J
$$

Also since $K[x]$ is a unique factorization domain, their intersection is given by $I \cap J=\left\langle x^{2} \cdot(x-1)\right\rangle$. Thus by the Chinese remainder theorem we have

$$
K[x] /\left\langle x^{3}-x^{2}\right\rangle \cong K[x] /\left\langle x^{2}\right\rangle \times \underbrace{K[x] /\langle x-1\rangle}_{\cong K} .
$$

Using the result from Exercise 1 (that products of rings give disjoint unions of affine schemes) we conclude the claim.
b) By definition, the scheme-theoretic intersection $X_{1} \cap X_{2}$ is cut out by the sum of the ideals, and so given by

$$
\left\langle x^{2}+y^{2}-1, y-x^{2}+1\right\rangle=\langle\underbrace{x^{2}+\left(x^{2}-1\right)^{2}-1}_{=x^{4}-x^{2}=x^{2}(x-1)(x+1)}, y-x^{2}+1\rangle
$$

Using the second generator to eliminate the variable $y=x^{2}-1$ from $K[x, y]$, we thus have

$$
X_{1} \cap X_{2} \cong \operatorname{Spec} K[x] /\left\langle x^{2}(x-1)(x+1)\right\rangle
$$

By the Chinese remainder theorem again we have two cases:

- for $\operatorname{char}(K) \neq 2$ we have $1 \neq-1$ and

$$
X_{1} \cap X_{2} \cong \operatorname{Spec} K[x] /\left\langle x^{2}\right\rangle \sqcup \underbrace{\operatorname{Spec} K[x] /\langle x-1\rangle}_{\cong \operatorname{Spec} K} \sqcup \underbrace{\operatorname{Spec} K[x] /\langle x+1\rangle}_{\cong \operatorname{Spec} K}
$$

is the disjoint union of one double point and two simple points.

- for $\operatorname{char}(K)=2$ we have $1=-1$ and

$$
X_{1} \cap X_{2} \cong \operatorname{Spec} K[x] /\left\langle x^{2}\right\rangle \sqcup \underbrace{\operatorname{Spec} K[x] /\left\langle(x-1)^{2}\right\rangle}_{\cong \operatorname{Spec} K[y] /\left\langle y^{2}\right\rangle}
$$

is the disjoint union of two double points.

