Exercise Sheet 12

Exercise 1. Show that for a scheme X the following are equivalent:
a) X is reduced, i.e., for every open subset $U \subset X$ the ring $\mathcal{O}_{X}(U)$ has no non-zero nilpotent elements.
b) There is an open cover of X by affine schemes $U_{i}=\operatorname{Spec} R_{i}$ such that every ring $\mathcal{O}_{X}\left(U_{i}\right)=R_{i}$ has no non-zero nilpotent elements.
c) For every point $p \in X$, the local ring $\mathcal{O}_{X, p}$ has no non-zero nilpotent elements.

Solution.

a) a) $\Longrightarrow \mathrm{b})$: Take any affine cover $\left\{U_{i}: i \in I\right\}$ of X, then by assumption all $\mathcal{O}_{X}\left(U_{i}\right)$ are reduced.
b) b) $\Longrightarrow \mathrm{c}$): For $p \in X$ choose some element $U_{i}=\operatorname{Spec}\left(R_{i}\right)$ containing p (identifying $p \subseteq R_{i}$ as a prime ideal). Then $\mathcal{O}_{X, p}=\left(R_{i}\right)_{p}$ is a localization of R_{i} at p. This is reduced: assume that $a / b \in\left(R_{i}\right)_{p}$ was a nilpotent element, so that there exists $m \in$ \mathbb{N} such that $(a / b)^{m}=0 / 1 \in\left(R_{i}\right)_{p}$. By definition this means that there is $s \in R_{i} \backslash p$ such that $s \cdot\left(a^{m} \cdot 1-0 \cdot b^{m}\right)=0 \in R_{i}$. But this means $(s \cdot a)^{m}=s^{m-1} \cdot s \cdot a^{m}=0 \in R_{i}$ which can only happen if $s \cdot a=0 \in R_{i}$ as R_{i} is reduced. But then $s \cdot(a \cdot 1-0 \cdot b)$ shows that $a / b=0 / 1 \in\left(R_{i}\right)_{p}$. Hence $\left(R_{i}\right)_{p}$ is reduced as desired.
c) c) \Longrightarrow a): Assume that $\varphi=\left(\varphi_{p}\right)_{p \in U} \in \mathcal{O}_{X}(U)$ is nilpotent, so that $0=\varphi^{m}=$ $\left(\varphi_{p}^{m}\right)_{p \in U}$. Then by definition $\varphi_{p}^{m}=0 \in \mathcal{O}_{X, p}$ for all $p \in U$. Since all $\mathcal{O}_{X, p}$ are reduced, it follows $\varphi_{p}=0$ for all $p \in U$ and thus $\varphi=0$.

Exercise 2.

a) Let X be the scheme $\operatorname{Spec} \mathbb{Z}[x, y] /\left(x^{2}+y^{2}-1\right)$ and $\mathbb{A}_{\mathbb{Z}}^{1}=\operatorname{Spec} \mathbb{Z}[t]$ be the affine line over \mathbb{Z}. Provide an explicit isomorphism

$$
X \supseteq D(2(y-1)) \simeq D\left(2\left(t^{2}+1\right)\right) \subseteq \mathbb{A}_{\mathbb{Z}}^{1}
$$

between open subschemes of X and $\mathbb{A}_{\mathbb{Z}}^{1}$.
Hint: It is useful to recall the proof of birational equivalence of an irreducible quadric and projective space over an algebraically closed field.
b) What are the \mathbb{Q}-points if X i.e. morphisms $\operatorname{Spec} \mathbb{Q} \rightarrow X$? Describe them explicitly using the isomorphism above. Use this to describe Pythagorean triples explicitly.
c) How many \mathbb{F}_{p}-points does X have? You can use the fact that the equation $t^{2}=-1$ has a solution in \mathbb{F}_{p} for odd p if and only if $p=1 \bmod 4$.

Solution.

a) By inspecting the birational equivalence between $V\left(x^{2}+y^{2}-z^{2}\right)=: X^{\prime} \subset \mathbb{P}^{2}$ and \mathbb{P}^{1} over an algebraically closed field of characteristic not 2 given by the projection from $(0: 1: 1) \in X^{\prime}$ we see that in the affine coordinates it is given by $t \mapsto \frac{x}{1-y}$ and $x \mapsto \frac{2 t}{1+t^{2}} ; y \mapsto \frac{t^{2}-1}{t^{2}+1}$.
Denote $\mathcal{O}_{X}(X)=\mathbb{Z}[x, y] /\left(x^{2}+y^{2}-1\right)$ by R. The maps above can be used to define ring homomorphisms $\psi: R \rightarrow \mathbb{Z}[t]\left[\frac{1}{t^{2}+1}\right]$ and $\phi: \mathbb{Z}[t] \rightarrow R\left[\frac{1}{y-1}\right]$. As we have $\psi(1-y)=1-\frac{t^{2}-1}{t^{2}+1}=\frac{2}{1+t^{2}}$ the first one extends to $R\left[\frac{1}{1-y}\right] \rightarrow \mathbb{Z}[t]\left[\frac{1}{2\left(t^{2}+1\right)}\right]$ and hence to $\tilde{\psi}: R\left[\frac{1}{2(1-y)}\right] \rightarrow \mathbb{Z}[t]\left[\frac{1}{2\left(t^{2}+1\right)}\right]$.
Similarly as $\phi\left(t^{2}+1\right)=\left(\frac{x}{1-y}\right)^{2}+1=\frac{x^{2}+1-2 y+y^{2}}{(1-y)^{2}}=\frac{2(1-y)}{(1-y)^{2}}=\frac{2}{1-y}$ the second one extends to $\mathbb{Z}[t]\left[\frac{1}{t^{2}+1}\right] \rightarrow R\left[\frac{1}{2(1-y)}\right]$ and hence to $\tilde{\phi}: \mathbb{Z}[t]\left[\frac{1}{2\left(t^{2}+1\right)}\right] \rightarrow R\left[\frac{1}{2(1-y)}\right]$. Now we can see that $\tilde{\phi} \circ \tilde{\psi}$ and $\tilde{\psi} \circ \tilde{\phi}$ are identity maps hence giving an isomorphism $D(2(y-1)) \simeq D\left(2\left(t^{2}+1\right)\right)$.
b) A morphism $f: \operatorname{Spec} \mathbb{Q} \rightarrow \operatorname{Spec} R$ is the same as a morphism $f^{\#}: R \rightarrow \mathbb{Q}$. Taking the images of x and y we see that these correspond to pairs $(x, y) \in \mathbb{Q}^{2}$ such that $x^{2}+y^{2}=1$. Using a) we see that if f factors through $D(2(y-1))$ then any such pair is given by $\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)$ where $t \in \mathbb{Q}$. Otherwise we have $y=1$ so the pair is $(0,1)$.
Any nonzero triple $(a, b, c) \in \mathbb{Z}^{3}$ with $a^{2}+b^{2}=c^{2}$ gives rise to a \mathbb{Q}-point $\left(\frac{a}{c}, \frac{b}{c}\right)$ on X and hence either $(a, b, c)=(0, k, k)$ or we have $\left(\frac{a}{c}, \frac{b}{c}\right)=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)$ where $t \in \mathbb{Q}$. Writing $t=\frac{r}{s}$ with coprime integers r, s we see that the triple (a, b, c) is of the form $\left(2 k r s, k\left(r^{2}-s^{2}\right), \pm k\left(r^{2}+s^{2}\right)\right)$.
c) If $p=2$ then the equation over \mathbb{F}_{2} is equivalent to $x+y=1$ and there are exactly 2 solutions. Suppose p is odd.
Using the similar description but for \mathbb{F}_{p}-points we see that any $(x, y) \in \mathbb{F}_{p}^{2}$ with $x^{2}+y^{2}=1$ is either $(0,1)$ or arises from an \mathbb{F}_{p}-point of $D\left(2\left(t^{2}+1\right)\right) \subset \mathbb{A}_{\mathbb{Z}}^{1}$. Now we have $\mathbb{A}_{\mathbb{Z}}^{1}\left(\mathbb{F}_{p}\right)=D\left(2\left(t^{2}+1\right)\right)\left(\mathbb{F}_{p}\right) \sqcup V\left(2\left(t^{2}+1\right)\right)\left(\mathbb{F}_{p}\right)$ and \mathbb{F}_{p}-points of $V\left(2\left(t^{2}+1\right)\right)$ correspond to solutions of $t^{2}+1=0$ in \mathbb{F}_{p} so there are either 0 or $2 \mathbb{F}_{p}$-points in $V\left(2\left(t^{2}+1\right)\right)$. Putting all together we see that the number of solutions of $x^{2}+y^{2}=1$ over \mathbb{F}_{p} for odd p is $p+1$ for $p=3(\bmod 4)$ and $p-1$ otherwise.

Exercise 3. Let X be a scheme and Z be a closed subset of the underlying topological space of X. Show that there is a unique closed subscheme Y of X such that its underlying topological space is Z and Y is reduced.
Solution. Suppose first that $X=\operatorname{Spec} R$ is an affine scheme and hence Z is the vanishing locus of an ideal $I \unlhd R$. We see that $\operatorname{Spec}(R / \sqrt{I}) \hookrightarrow \operatorname{Spec} R$ is a reduced closed subscheme with the same underlying topological space. On the other hand for any closed subscheme $\operatorname{Spec}(R / J) \hookrightarrow \operatorname{Spec} R$ with the same underlying topological space we have $\sqrt{J}=\sqrt{I}$ so it defines J uniquely if it is reduced. Now if X is arbitrary we cover it with affines and use the uniqueness for any affine subscheme to deduce that the induced covering of Z endows it with a uniquely defined scheme structure. Reducedness follows from Exercise 1.
Exercise 4. Recall that for any \mathbb{F}_{p}-algebra R there is a morphism $x \mapsto x^{p}$ called the Frobenius morphism of R.
a) Let X be a scheme over \mathbb{F}_{p} i.e. with a morphism $X \rightarrow \operatorname{Spec} \mathbb{F}_{p}$. Show that the structure sheaf takes values in \mathbb{F}_{p}-algebras and the Frobenius morphisms on affine charts glue uniquely to a morphism Frob: $X \rightarrow X$ which is called the absolute Frobenius morphism of X.
b) Let X be a variety over \mathbb{F}_{p}. Describe the scheme-theoretic intersection of the graphs of Frob and identity in $X \times X$.

Solution.

a) For any open $U \subset X$ we have $U \rightarrow \operatorname{Spec} \mathbb{F}_{p}$ which is the same as giving a morphism $\mathbb{F}_{p} \rightarrow \mathcal{O}_{X}(U)$ so the structure sheaf takes values in \mathbb{F}_{p}-algebras. For any \mathbb{F}_{p}-algebra R the morphism Frob_{R} induces the identity morphism on the underlying topological space of $\operatorname{Spec} R$ so the Frobenius morphisms on the affine charts glue uniquely to the identity morphism on the underlying topological space of X.
The morphism of structure sheaves on any affine open $\operatorname{Spec} R$ then should be given by Frob_{R} which glue uniquely to the morphism $\operatorname{Frob}_{\mathcal{O}_{X}(U)}$ on any open U.
Note that Frob_{X} is functorial in X, i.e. for any morphism of schemes $f: X \rightarrow Y$ we have $f \circ \operatorname{Frob}_{X}=\operatorname{Frob}_{Y} \circ f$.
b) By the universal property of the fibre product we see that the scheme-theoretic intersection of Δ_{X} and $\Gamma_{\mathrm{Frob}_{X}}$ in $X \times X$ is given by a scheme Y with a morphism $f: Y \rightarrow X$ with the following property: for any morphism of schemes $g: Z \rightarrow X$ such that $\operatorname{Frob}_{X} \circ g=g$ there is a unique morphism $\phi: Z \rightarrow Y$ such that $g=f \circ \phi$. In particular $\operatorname{Frob}_{X} \circ f=f$ and by functoriality of Frobenius morphism we have $f \circ \operatorname{Frob}_{Y}=\operatorname{Frob}_{X} \circ f=f$. Which means that by the universal property described above we have $\operatorname{Frob}_{Y}=\operatorname{Id}_{Y}$. We claim that $Y \simeq \operatorname{Spec}\left(\mathbb{F}_{p}^{\oplus\left|X\left(\mathbb{F}_{p}\right)\right|}\right)$.
Indeed, let us cover X by affine open subschemes $\operatorname{Spec} R_{i}$. Then the closed subscheme $\Delta_{X} \in X \times X$ is covered by Spec $R_{i} \otimes R_{i}$ and $\Delta \cap \operatorname{Spec} R_{i} \otimes R_{i}$ is given by the ideal $(x \otimes 1-1 \otimes x)$ where $x \in R_{i}$. Similarly the subscheme $\Gamma_{\text {Frob }_{X}} \cap \operatorname{Spec} R_{i} \otimes R_{i}$ is given by the ideal $\left(x \otimes 1-(1 \otimes x)^{p}\right)$ where $x \in R_{i}$. So their intersection in Spec $R_{i} \otimes R_{i}$ is isomorphic to $\operatorname{Spec}\left(R_{i} /\left(x^{p}-x\right)\right)$, where $x \in R_{i}$. Hence these affine schemes cover Y and our claim then follows from the following claim:

Let R be a finitely generated \mathbb{F}_{p}-algebra. Then there is an isomorphism of rings $\tilde{R}:=R /\left(x^{p}-x \mid x \in R\right) \simeq \mathbb{F}_{p}^{\oplus n}$, where $n \in \mathbb{N}$. Note that it follows automatically that n is the number of algebra homomorphisms from \tilde{R} to \mathbb{F}_{p} and since any homomorphism from R to \mathbb{F}_{p} factors through \tilde{R} this number is the same as the number of homomorphisms from R to \mathbb{F}_{p}.
Indeed, if $R \simeq \mathbb{F}_{p}\left[x_{1}, \cdots, x_{m}\right]$ then by Chinese remainder theorem or by induction on m we see that $\tilde{R} \simeq \mathbb{F}_{p}^{\oplus p^{m}}$. Now any finitely generated R is a quotient of a polynomial ring, hence \tilde{R} is a quotient of $\mathbb{F}_{p}^{\oplus p^{m}}$ and hence is isomorphic to $\mathbb{F}_{p}^{\oplus n}$ for some n.

