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Exercise Sheet 14

Exercise 1. Let f : X → Y and g : Y → Z be morphisms of schemes.

a) Recall the definition of all the data involved, and then define what the composition
g ◦ f : X → Z is. Verify that it satisfies all necessary properties.

b) For X = Spec(R), Y = Spec(S) and Z = Spec(T ) with f, g coming from ring
homomorphisms S → R, T → S the composition g ◦ f comes from the composite
morphism T → S → R.

Note: Cynics might say that we should probably have done this in class, and they wouldn’t
be entirely wrong . . .

Solution.

a) The underlying map of topological spaces for g ◦ f is indeed just the composition
of the maps g, f . Clearly this is continuous as the composition of continuous maps.
For any open set U ⊆ Z, the pullback map is defined as the composition

(g ◦ f)∗U : OZ(U)
g∗U−→ OY (g

−1(U))
f∗
g−1(U)−−−−→ OX((g ◦ f)−1(U)) .

The fact that this is compatible under restrictions U ′ ⊆ U ⊆ Z follows from the
corresponding properties of the pullbacks f ∗, g∗. The fact that for p ∈ X the two
maps f ∗

p : OY,f(p) → OX,p and g∗f(p) : OZ,(g◦f)(p) → OY,f(p) are maps of local rings,

implies the same for their composition f ∗
p ◦ g∗f(p) = (g ◦ f)∗p.

b) As a map between affine schemes, the composition g ◦ f : Spec(R) → Spec(T ) is
determined uniquely by its action on the global sections. By the above definition
this is just

(g ◦ f)∗Spec(T ) : T
g∗
Spec(T )−−−−→ S

f∗
Spec(S)−−−−→ R

as claimed.

Exercise 2. Let F be an invertible sheaf (i.e. locally free of rank 1) on A1
K = SpecK[x]

for K a field. Our goal below is to show that F ∼= OA1
K
is trivial.

a) Why is F is of the form F = M̃ for M a module over K[x]?

b) Let D(fi) ⊆ A1
K be a distinguished open such that there is an isomorphism

φi : R̃fi = OD(fi)
∼−→ F|D(fi) = M̃fi .

Let φi(1) = mi/f
ri
i for mi ∈ M and ri ∈ N. Show that the map

si : R̃ → M̃ induced by R → M,a 7→ ami

induces surjective maps of stalks si,p : Rp → Mp for all p ∈ D(fi).

Page 1



ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

c) Show that F is of the form F = M̃ for M a finitely generated module over K[x].
Hint: Choose a finite cover of A1

K by sets D(f1), . . . , D(fn) as in the previous part
of the exercise and construct a surjection Rn → M .

d) Prove that F ∼= OA1
K
is trivial.

Hint: Recall a certain statement about finitely generated modules over principal
ideal domains.

Solution.

a) This follows from the fact that F is quasi-coherent. Indeed, every locally free sheaf
is quasi-coherent, since there is an open cover by affine schemes SpecRi for which
it has the form R̃r

i . But then we had a result in class that any quasi-coherent
sheaf on an affine scheme (like A1

K = SpecK[x]) must come from a module over the
corresponding ring (which is K[x] in our example).

b) For p ∈ D(fi) the induced map of stalks is just

si,p : Rfi → Mfi ,
a

b
7→ ami

b
.

Comparing this to the map φi,p of stalks above, we just see si,p = f ri
i · φi,p. As

p ∈ D(fi) we have that fi ∈ R \ p so fi is a unit in Rp. As si,p and φi,p only differ
by a unit, and φi,p is an isomorphism, we have that si,p is an isomorphism (and thus
surjective).

c) As F is locally free, we can find a cover of A1
K by distinguished opens D(fi) such

that isomorphisms φi exist as in part b). We claim that finitely many of them
already cover A1

K . To see this we can either use that K[x] is Noetherian, and so
SpecK[x] is also a Noetherian space. Or we can observe that the D(fi) covering
A1

K means that the intersection V (fi : i ∈ I) of their complements is empty. By
the scheme-theoretic Nullstellensatz, this means that

√
⟨fi : i ∈ I⟩ = K[x] and so

1 = 1m ∈ ⟨fi : i ∈ I⟩ which means that we find finitely many fi and ti ∈ R with
1 =

∑
i tifi. From that equality one can see that D(f1) ∪ . . . ∪D(fn) = A1

K .

After choosing such a finite cover, consider the map

s : Rn → M, (a1, . . . , an) 7→ a1m1 + . . .+ anmn ,

where the mi are again as in part b). We claim that s is a surjective map of
R-moduless (which would finish the proof). This surjectivity is equivalent to the
exactness of the sequence Rn s−→ M → 0. As we have seen in class, such an exactness
can be checked at each prime p ∈ A1

K . But each p is contained in one of the D(fi),
and by part b) we know that si,p is then surjective. Since this is just one component
of the map sp it follows that sp is surjective as well.

d) The relevant statement from the Hint is that any finitely generated module M over
the PID K[x] is a finite sum of cyclic modules, so that we have

M ∼= (K[x]/⟨p1⟩)⊕ . . .⊕ (K[x]/⟨pℓ⟩) ,

for p1, . . . , pℓ ∈ K[x], and we can assume that none of them is a unit since otherwise
K[x]/⟨pi⟩ = {0}. We claim that ℓ = 1 and p1 = 0, so that indeed M ∼= K[x] and

F ∼= K̃[x] = OA1 .
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To conclude the proof, we use that for all q ∈ Spec(K[x]) we must have Mq
∼= Fq

!∼=
K[x]q since F is locally free. Applying this first to q = ⟨0⟩ we get that

M⟨0⟩ = (K(x)/⟨p1K(x)⟩)⊕ . . .⊕ (K(x)/⟨pℓK(x)⟩)
!∼= K(x) ,

where we use K[x]⟨0⟩ ∼= K(x) and that localization commutes with quotients. For
any polynomial p ∈ K[x] we have

pK(x) =

{
0 if p = 0,

K(x) if p ̸= 0 .

Thus the above equality can only happen if precisely one of the pi (say p1) is equal
to zero, and all others are nonzero. It remains to show that ℓ = 1. Otherwise, let
q be any prime ideal containing p2 (which exists since we assumed that p2 is not a
unit). Then we have K[x]q/⟨p2K[x]q⟩ ≠ {0} and so the equality

Mq = (K[x]q/⟨0K[x]q⟩)︸ ︷︷ ︸
=K[x]q

⊕ (K[x]q/⟨p2K[x]q⟩)︸ ︷︷ ︸
̸={0}

⊕ . . . ∼= K[x]q

gives a contradiction.

Exercise 3. The goal of this exercise is to prove that for K an algebraically closed
field, the set of automorphisms of Pn

K over K is isomorphic to the projective linear group
PGL(n + 1, K). The crucial input for the proof will be the following result, which you
can use below:

Thm. Any invertible sheaf L on Pn
K is of the form L ∼= OPn

K
(d) for some d ∈ Z.

a) Show that for f : X → Y a morphism and F ,G locally free sheaves on Y , one has
f ∗(F ⊗ G) ∼= (f ∗F)⊗ (f ∗G).
Hint: You can use without proof that it’s sufficient to show this for X, Y affine
schemes and F ,G trivial, i.e. direct sums of OY .

b) Recall from class that any morphism f : X → Pn
K is given by the data of an invert-

ible sheaf Lf = f ∗OPn
K
(1) together with sections s0, . . . , sn ∈ L(X) not vanishing

simultaneously anywhere on X. Assume that f : Pn
K → Pn

K and g : Pn
K → Pn

K

are given by line bundles Lf = OPn
K
(df ) and Lg = OPn

K
(dg). Show that we have

df , dg ≥ 0 and the composition g ◦ f is given by Lg◦f ∼= OPn
K
(df · dg).

c) Conclude that for any isomorphism f : Pn
K

∼−→ Pn
K one has f ∗OPn

K
(1) ∼= OPn

K
(1).

d) Finish the proof that any automorphism f ∈ AutK(Pn
K ,Pn

K) is given by a projective
linear map in PGL(n+ 1, K).

Solution.

a) Let’s first prove the statement in the suggested setting of X = Spec(R) and Y =

Spec(S) with F = S̃a and G = S̃b. Then we use that pullbacks and tensor products
are easy for quasi-coherent sheaves on affine schemes:

f ∗(F ⊗ G) = f ∗( S̃a ⊗ S̃b︸ ︷︷ ︸
= ˜Sa⊗SSb∼=S̃ab

) ∼= ˜(Sab ⊗S R) = R̃ab ∼= R̃a ⊗ R̃b ∼= (f ∗F)⊗ (f ∗G)

Using some gluing argument, one can generalize the proof to arbitrary X, Y .
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b) Using that OPn
K
(a)⊗OPn

K
(b)

(∗)∼= OPn
K
(a+ b), we have

Lg◦f = (g ◦ f)∗OPn
K
(1) = f ∗g∗OPn

K
(1) = f ∗OPn

K
(dg)

(∗)
= f ∗OPn

K
(1)⊗ . . .⊗OPn

K
(1)︸ ︷︷ ︸

dg times

a)∼= f ∗OPn
K
(1)⊗ . . .⊗ f ∗OPn

K
(1)︸ ︷︷ ︸

dg times

∼= OPn
K
(df )⊗ . . .⊗OPn

K
(df )︸ ︷︷ ︸

dg times

(∗)∼= OPn
K
(df · dg) .

For the inequalities df , dg ≥ 0: if say df < 0, then Lf (Pn
K) = {0} so the sections

s0, . . . , sn ∈ Lf (Pn
K) defining f would all vanish, giving a contradiction to them not

all vanishing simultaneously.

c) Let g be the inverse of f and df , dg as in part b), then

Lg◦f = (g ◦ f)∗OPn
K
(1) = (idPn

K
)∗OPn

K
(1) = OPn

K
(1).

But by part b) this is also isomorphic to OPn
K
(dfdg), so dfdg = 1. Since also

df , dg ≥ 0 this forces df = dg = 1 and so f ∗OPn
K
(1) ∼= OPn

K
(1).

d) By part c) and the classification theorem for maps to projective space, the morphism
f is given by sections

s0, . . . , sn ∈ OPn
K
(1)(Pn

K) = LinK(x0, . . . , xn) ,

in other words by n+1 homogeneous linear polynomials in the coordinates x0, . . . , xn.
This shows that f is just the multiplication by an (n+ 1)× (n+ 1) matrix over K
(containing the coefficients of these polynomials). If that matrix had a non-trivial
element x in its kernel, then s0(x) = . . . = sn(x) = 0, giving a contradiction to the
sections not vanishing simultaneously at any point. Thus the matrix is invertible,
and hence f is a projective linear automorphism as claimed.
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