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Exercise Sheet 2

Exercise 1. Let X ⊂ An be an arbitrary subset. Prove that V (I(X)) = X.

Solution. From the definitions it’s clear that X ⊆ V (I(X)) and since that latter set is
closed, also X is contained in it. Conversely, assume that Y is a closed set containing X,
then clearly I(Y ) ⊆ I(X) and hence V (I(X)) ⊆ V (I(Y )) = Y , where we use that V (−)
and I(−) are inclusion-reversing bijections between the set of affine varieties and the set
of radical ideals in K[x1, . . . , xn]. Applying this to Y = X yields the desired inclusion.

Exercise 2. (Topology marathon) Let X be a topological space. Show the following
statements.

a) If X = X1 ∪ . . . ∪Xn with Xi Noetherian, then X is Noetherian as well.

b) If Y ⊆ A ⊆ X is closed in the subspace topology of A, then Y ∩ A = Y .

c) A set A ⊆ X is irreducible if and only if A is irreducible.

d) If X is irreducible and U ⊆ X is open, then U is irreducible.

e) If f : X → Y is continuous and X is connected, then so is f(X).

f ) If f : X → Y is continuous and X is irreducible, then so is f(X).

Solution.

a) Assume we had a decreasing chain Y0 ⊇ Y1 ⊇ . . . of closed subsets of X. Intersecting
with the Xi would yield decreasing chains of closed subsets of Xi. Since Xi is
Noetherian, they contain only finitely many strict inclusions, so there exists N after
which the sequences stabilize. But then also the sequence

Ym = Ym ∩ (X1 ∪ . . . ∪Xn) = (Ym ∩X1) ∪ . . . ∪ (Ym ∩Xn)

stabilizes for m ≥ N , showing that X is Noetherian.

b) The inclusion Y ⊆ Y ∩A is clear. Conversely, the set Y is closed in A if there exists
a closed set Z ⊆ X with Y = Z ∩ A. Since Y is the smallest set containing Y , we
have Y ⊆ Z and thus Y ∩ A ⊆ Z ∩ A = Y .

c) Assume that A is irreducible and let A = B1 ∪ B2 be a cover by closed sets. Then
A = (A∩B1)∪ (A∩B2) is a cover of A by closed sets, forcing e.g. A∩B1 = A, i.e.
A ⊆ B1. Taking closure on both sides gives A ⊆ B1 = B1 and thus A = B1.

Conversely, assume that A is irreducible and let A = A1 ∪ A2 be a cover by closed
sets. Taking closure on both sides we have A = A1 ∪ A2 forcing e.g. A = A1. But
then by part b) we have A = A1 ∩ A = A1.
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d) If U = ∅ then it is irreducible from the definition. On the other hand, for U ̸= ∅ we
saw in the lecture that U is dense, so U = X. Since this closure is irreducible, by
part c) also U itself is irreducible.

e) Assume f(X) = Z1∪Z2 with Z1, Z2 closed and disjoint. ThenX = f−1(Z1)∪f−1(Z2)
is a closed disjoint cover of X. Since X is connected, this forces e.g. f−1(Z1) = X,
but then applying f on both sides (and using that f : X → f(X) is surjective) we
have Z1 = f(X). This proves that f(X) is connected.

f ) Repeating the argument from part e) removing the word ”disjoint” proves that f(X)
is irreducible.

Exercise 3. Calculate the irreducible components of X = V (J) for

J = ⟨y2 − x4, x2 − 2x3 − x2y + 2xy + y2 − y⟩ ⊆ K[x, y].

Hint: The answer depends on the characteristic of K.

Solution. Factoring the generators we have

J = ⟨(y − x2)(y + x2), (y − x2)(2x+ y − 1)⟩ = ⟨y − x2⟩︸ ︷︷ ︸
=J1

· ⟨y + x2, 2x+ y − 1⟩︸ ︷︷ ︸
=J2

.

As a result, we have X = V (J1)∪V (J2) =: X1∪X2. Since K[x, y]/J1 ∼= K[x] is a domain,
we have that J1 is prime and X1 is irreducible. On the other hand we have

X2 = V (y+x2, 2x+y−1) = V (−2x+1+x2, 2x+y−1) = V (x−1, 2x+y−1) = {(1,−1)} .

Hence X2 is irreducible as well. For char(K) ̸= 2 we have that (1,−1) /∈ X1 and so
X = X1⊔X2 is the irreducible decomposition. For char(K) = 2 we do have X2 ⊆ X1 and
so X = X1 is the decomposition.

Exercise 4. Let {Ui : i ∈ I} be an open cover of a topological space X and assume
that Ui ∩ Uj ̸= ∅ for all i, j ∈ I. Show:

a) If Ui is connected for all i, then so is X.

b) If Ui is irreducible for all i, then so is X.

Solution.

a) Assume that X = X1 ∪ X2 is a disjoint closed cover of X, then Ui = (X1 ∩ Ui) ∪
(X2 ∩Ui) is a disjoint closed cover of Ui. Since Ui is connected, this means that one
of these two sets must be all of Ui, so there exists ki ∈ {1, 2} with Ui ⊆ Xki . We
claim that the ki must either all be 1 or all be 2. Assume otherwise, i.e. Ui1 ⊆ X1

and Ui2 ⊆ X2. This gives a contradiction since ∅ ≠ Ui1 ∩ Ui2 ⊆ X1 ∩X2 = ∅.

b) For any i, j the non-empty open set Ui ∩ Uj is dense in both Ui and Uj, since these
two sets are irreducible and hence any non-empty open subset of them is dense.
Picking any i0 ∈ I we then claim that U i0 = X which finishes the proof since X is
then irreducible as the closure of an irreducible set. The claim just follows from the
fact that for all j ∈ I we have U i0 ⊇ Ui0 ∩ Uj ⊇ Uj where the second containment
was shown in the first sentence of the current proof. Taking the union over all j
proves U i0 ⊇

⋃
j Uj = X.
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Exercise 5. Let X be a topological space. Prove:

a) If {Ui : i ∈ I} is an open cover of X, then dimX = sup{dimUi : i ∈ I}.

b) If X is an irreducible affine variety and U ⊆ X a non-empty open subset, then
dimX = dimU .

c) Does the statement from (b) hold more generally for any irreducible topological
space?

Solution.

a) Since Ui ⊆ X we have dimUi ≤ dimX, which shows the inequality ”≥”. For the
other inequality, assume we have a strict ascending chain X0 ⊊ X1 ⊊ . . . ⊊ Xn ⊆ X
of closed irreducible subsets of X. Choose i0 such that X0∩Ui0 ̸= ∅. Then we claim
that

X0 ∩ Ui0 ⊆ X1 ∩ Ui0 ⊆ . . . ⊆ Xn ∩ Ui0 ⊆ Ui0 (1)

is a strict ascending chain. Once we prove this claim, we obtain n ≤ dimUi0 and
taking the supremum over all n as above, we see that dimX ≤ sup{dimUi : i ∈ I}
as desired.

To show the claim, assume that Xk ∩ Ui0 = Xk+1 ∩ Ui0 . But then Xk+1 = Xk ∪
(Xk+1 \ Ui0) is a cover of the irreducible set Xk+1 by two closed subsets. However
Xk ⊊ Xk+1 is a strict containment, and similarly Xk+1 \ Ui0 ⊊ Xk+1 since ∅ ≠
X0 ∩ Ui0 ⊆ Xk+1 ∩ Ui0 is non-empty. This gives a contradiction, and proves the
claim.

b) We prove the statement by induction on dimX. For dimX = 0 we necessarily have
X = {a} which forces U = X since U is non-empty, and proves dimX = dimU .

For the induction step, assume that X ⊆ Am is of dimension n+1. First, we remark
that by Exercise 2 d) the set U is irreducible itself, and dense in X. Moreover, it
must be of dimension at least 1 (since otherwise U is a single point, and so its closure
X is still a single point, hence of dimension 0, giving a contradiction).

Choose a ∈ U ⊆ X and let f ∈ K[x1, . . . , xm] be a linear polynomial vanishing at a
but not constant on U (which is possible since U being of positive dimension, it must
have at least one other point apart from a). Then 0 ̸= f ∈ A(X) and by Krull’s
principal ideal theorem, any irreducible component X ′ of VX(f) has dimension n.
Choose such a component X ′ containing a ∈ VX(f). Then X ′ is an irreducible affine
variety of dimension n and U∩X ′ is a non-empty open subset, hence by the induction
hypothesis we have n = dimX ′ = dimU ∩ X ′. Let V0 ⊊ V1 ⊊ . . . ⊊ Vn ⊆ U ∩ X ′

be a strict ascending chain of closed irreducible subsets of U ∩ X ′. Then it can
be extended by the strict inclusion Vn ⊊ U to a chain of length n + 1, showing
dimU ≥ n + 1 = dimX ≥ dimU proving the desired equality. The inclusion of Vn

is strict in U since
Vn ⊆ U ∩X ′ ⊆ U ∩ VX(f) ⊊ U

as by assumption f is not constant (and hence not identically equal to zero) on U .

c) No: take X = {0, 1} with the topology having closed sets C = {∅, {1}, {1, 2}}.
All these closed sets are irreducible (since none is a union of two strictly contained
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smaller closed sets), and in particular {1} ⊆ {1, 2} = X is the unique maximal chain
of irreducible non-empty subsets of X, showing dimX = 1. However, the open set
U = {2} ⊆ X is non-empty, but has dimU = 0.
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