Exercise Sheet 3

Exercise 1. Let $\varphi, \psi \in \mathcal{F}(U)$ be two sections of a sheaf \mathcal{F} on an open subset U of a topological space X. Show:
a) If φ and ψ agree in all stalks i.e., $[(U, \varphi)]=[(U, \psi)] \in \mathcal{F}_{a}$ for all $a \in U$ then $\varphi=\psi$.
b) If $\mathcal{F}=\mathcal{O}_{X}$ is the sheaf of regular functions on an irreducible affine variety X then we can already conclude that $\varphi=\psi$ if we only know that they agree in one stalk \mathcal{F}_{a} for $a \in U$.
Hint: It might help to first cover U by distinguished affine open subsets.
c) For a general sheaf \mathcal{F} on a topological space X the statement of (b) is false.

Solution.

a) Given $a \in U$, the equality $[(U, \varphi)]=[(U, \psi)] \in \mathcal{F}_{a}$ by definition means that there is an open set $a \in U_{a} \subseteq U$ with $\left.\varphi\right|_{U_{a}}=\left.\psi\right|_{U_{a}}$. Thus on the open cover $\left\{U_{a}: a \in U\right\}$ of U we have the system of sections $\left.\psi\right|_{U_{a}} \in \mathcal{F}\left(U_{a}\right)$ which of course are compatible on the overlaps $U_{a} \cap U_{b}$. By the sheaf axiom for \mathcal{F} there is a unique section in $\mathcal{F}(U)$ restricting to the $\left.\psi\right|_{U_{a}} \in \mathcal{F}\left(U_{a}\right)$. But both φ and ψ have this property, and thus by uniqueness they must be equal.
b) First, we can cover U by distinguished open sets $D(f)$ and as above it suffices to show that the restrictions of φ, ψ agree on $D(f)$. So without loss of generality let us assume that $U=D(f)$ to start with, in which case $\varphi, \psi \in \mathcal{O}_{X}(U)=A(X)_{f}$ can be seen as elements of the localization of $A(X)$ at f. We have seen that for X an affine irreducible variety, its coordinate ring $A(X)$ is a domain. The equality $[\varphi]=[\psi] \in \mathcal{O}_{X, a}=A(X)_{I_{X}(a)}$ then implies that the images of φ, ψ under the localization map $A(X)_{f} \rightarrow A(X)_{I_{X}(a)}$ are equal. But $A(X)$ being a domain implies that this localization is injective, so $\varphi=\psi$ as desired.
c) Choose $X=U=\{0,1\}$ with the discrete topology and \mathcal{F} the sheaf of (arbitrary) functions to \mathbb{R}. Then $\varphi(x)=0$ and $\psi(x)=x$ agree in

$$
\mathcal{F}_{0}=(\underbrace{\mathcal{F}(\{0,1\})}_{\cong \mathbb{R}^{2}} \cup \underbrace{\mathcal{F}(\{0\})}_{\cong \mathbb{R}}) / \sim \cong \mathbb{R}
$$

but do not agree at 1 . Here in the computation of \mathcal{F}_{0} a function $(0 \mapsto a, 1 \mapsto b) \in$ $\mathcal{F}(\{0,1\})$ is equivalent to $(0 \mapsto c) \in \mathcal{F}(\{0\})$ if $c=a$. Thus every equivalence class has a unique representative in $\mathcal{F}(\{0\})=\mathbb{R}$ and thus the set \mathcal{F}_{0} of equivalence classes is exactly isomorphic to \mathbb{R} (via evaluation at 0).

Exercise 2. Let a be any point on the real line \mathbb{R}. For which of the following sheaves \mathcal{F} on \mathbb{R} (with the standard topology) is the stalk \mathcal{F}_{a} actually a local ring in the algebraic sense (i.e., it has exactly one maximal ideal)?
a) \mathcal{F} is the sheaf of continuous functions;
b) \mathcal{F} is the sheaf of locally polynomial functions.

Solution.

a) We claim that the unique maximal ideal of \mathcal{F}_{a} is given by

$$
\mathfrak{m}_{a}=\left\{f \in \mathcal{F}_{a}: f(a)=0\right\}=\operatorname{ker}\left(\mathrm{ev}_{a}: \mathcal{F}_{a} \rightarrow \mathbb{R}\right)
$$

Since ev_{a} is surjective (a preimage of $b \in \mathbb{R}$ is the constant function $x \mapsto b$), we have $\mathbb{R}=\mathcal{F}_{a} / \mathfrak{m}_{a}$ by the second isomorphism theorem. Since this is a field, we have that \mathfrak{m}_{a} is maximal. On the other hand, let $[(U, g)] \in \mathcal{F}_{a} \backslash \mathfrak{m}_{a}$, then we claim that this element is a unit in \mathcal{F}_{a}. Indeed, since $g(a) \neq 0$ we have $V=\{x \in U: g(x) \neq 0\}$ is an open neighborhood of a. Then $[(U, g)] \cdot[(V, 1 / g)]=[(V, 1)]=1 \in \mathcal{F}_{a}$, showing $[(U, g)]$ is a unit. But then the complement of \mathfrak{m}_{a} is the set of units in \mathcal{F}_{a}, which proves that \mathfrak{m}_{a} is the unique maximal ideal (any other maximal ideal would have to contain at least one element outside \mathfrak{m}_{a}, which would force the ideal to be all of \mathcal{F}_{a}, a contradiction).
b) By the first part of the argument above, the ideal $\mathfrak{m}_{a}=\operatorname{ker}\left(\mathrm{ev}_{a}\right)$ is maximal. However, it is not the only maximal ideal: consider the function $f=x-a+1 \in \mathcal{F}_{a}$. We claim that f is not a unit. Indeed, otherwise its inverse g would have to be given by a polynomial in some open neighborhood U of a. But then the equality $f \cdot g=1$ on U would force this equality to be true in $\mathbb{R}[x]$ as well (since U is infinite). Since f has degree 1 , this gives a contradiction.
As a result, since f is not a unit, the ideal $\langle f\rangle$ generated by f is not all of \mathcal{F}_{a}. But then it is contained in some maximal ideal \mathfrak{m}^{\prime} of \mathcal{F}_{a}. Since $f \notin \mathfrak{m}_{a}$ (as $f(a)=1 \neq 0$), we have $\mathfrak{m}^{\prime} \neq \mathfrak{m}_{a}$, giving a second maximal ideal in \mathcal{F}_{a}.

Exercise 3. Let Y be a non-empty irreducible subvariety of an equidimensional affine variety X and set $U=X \backslash Y$.
a) Assume that $A(X)$ is a unique factorization domain. Show that $\mathcal{O}_{X}(U)=A(X)$ if and only if $\operatorname{codim}_{X} Y \geq 2$.
b) Show by example that the equivalence of (a) is in general false if $A(X)$ is not assumed to be a unique factorization domain.
Note: It's pretty hard (but not impossible) to give an example with X irreducible, but feel free to look for a reducible example.

Solution.

a) Let $Y=V_{X}\left(f_{1}, \ldots, f_{r}\right)$ for $f_{1}, \ldots, f_{r} \in A(X)$ nonzero, then $U=D\left(f_{1}\right) \cup \ldots \cup D\left(f_{r}\right)$ is a cover by distinguished open subsets. Moreover, the fact that $A(X)$ is a unique factorization domain (and thus in particular an integral domain) implies that X is irreducible.

Now first assume that $\operatorname{codim}_{X}(Y) \leq 1$. For $\operatorname{codim}_{X}(Y)=0$ the inclusion $Y \subseteq X$ with X, Y irreducible already implies $Y=X$. Thus $U=\emptyset$ and $\mathcal{O}_{X}(U)=\{0\}$ which is not a domain and hence not equal to $A(X)$. On the other hand, for $\operatorname{codim}_{X} Y=1$ we have seen in the lecture that $I_{X}(Y)=\langle f\rangle$ is principal. But then $\mathcal{O}_{X}(U)=\mathcal{O}_{X}(D(f))=A(X)_{f} \neq A(X)$, where we use that f is not a unit since $Y \neq \emptyset$. This proves one direction of the claimed equivalence.

On the other hand, assume $\operatorname{codim}_{X} Y \geq 2$, then in the representation $Y=V_{X}\left(f_{1}, \ldots, f_{r}\right)$ we necessarily have that in the irreducible decompositions of the f_{i} in the UFD $A(X)$, not all f_{i} share one common irreducible factor g. Otherwise, we would have $V_{X}(g) \subseteq Y$, which is a contradiction to the codimension of Y being at least two (since by Zariski's principal ideal theorem, the codimension of $V(g)$ would be at most 1). Then assume that $\varphi \in \mathcal{O}_{X}(U)$, then we want to show that $\varphi \in A(X)$ is a restriction of a function from all of X. We begin by noting that there is a representation

$$
\left.\varphi\right|_{D\left(f_{i}\right)}=\frac{g_{i}}{f_{i}^{m_{i}}} \in \mathcal{O}_{X}\left(D\left(f_{i}\right)\right)=A(X)_{f_{i}} .
$$

If one of the $m_{i}=0$, then the equality $\varphi=g_{i}$ on the dense open subset $D\left(f_{i}\right) \subseteq X$ implies $\varphi=g_{i} \in A(X)$ on all of X, finishing the proof. Otherwise, we can assume that f_{i} does not divide g_{i}. For the irreducible decomposition

$$
f_{i}=h_{i, 1}^{e_{i, 1}} \cdots h_{i, r_{i}}^{e_{i, r_{i}}}
$$

there must thus be an index k_{i} such that $h_{i, k_{i}}^{e_{i, k_{i}}}$ does not divide g_{i}.
Since X is irreducible, the non-empty open sets $D\left(f_{i}\right)$ and $D\left(f_{j}\right)$ intersect, and the equality $g_{i} / f_{i}^{m_{i}}=g_{j} / f_{j}^{m_{j}}$ in $\mathcal{O}_{X}\left(D\left(f_{i} f_{j}\right)\right)=A(X)_{f_{i} f_{j}}$ implies $g_{i} f_{j}^{m_{j}}=g_{j} f_{i}^{m_{i}} \in$ $A(X)$. Looking at powers of the irreducible factor $h_{i, k_{i}}$ on both sides (and using $m_{i} \geq 1$), we see that $h_{i, k_{i}}$ must divide $f_{j}^{m_{j}}$ and thus f_{j} for all j. But this gives a contradiction to our assumption that not all the functions f_{1}, \ldots, f_{r} share a common irreducible factor in $A(X)$.
b) Take $X=\mathbb{A}^{2} \times\{(0,0)\} \cup\{(0,0)\} \times \mathbb{A}^{2} \subseteq \mathbb{A}^{4}$ and $Y=\{(0,0,0,0)\}$. Then

$$
U=X \backslash Y=\underbrace{\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right) \times\{(0,0)\}}_{=: U_{1}} \sqcup \underbrace{\{(0,0)\} \times\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right)}_{=: U_{2}} .
$$

Then U_{1}, U_{2} are open in U and thus the function $\varphi \in \mathcal{O}_{X}(U)$ which is 0 on U_{1} and 1 on U_{2} is regular (as can be checked on the open cover $U=U_{1} \cup U_{2}$). However, it cannot have an extension to $X=U \cup\{(0,0,0,0)\}$ because then $(0,0,0,0)$ would be both in the closure of $V_{X}(\varphi)$ and $V_{X}(\varphi-1)$, which are necessarily disjoint sets.
Take $X=V\left(a^{2} c-b^{2}, a^{3} d-b^{3}, c^{3}-d^{2}\right) \subseteq \mathbb{A}^{4}$. The function $\frac{d}{c}$ is a section of the structure sheaf over $D(c) \subset X$ and the function $\frac{b}{a}$ is a section of the structure sheaf over $D(a) \subset X$. These sections coincide over $D(a c) \subset X$, therefore they define a regular function on $D(c) \cup D(a) \subset X$.
But $X \backslash(D(a) \cup D(c))=V(a, c) \cap X=(0,0,0,0)$ so removing the point $(0,0,0,0)$ from X yields a regular function defined by $\frac{d}{c}$ and $\frac{b}{a}$. It remains to see that there is no regular function extending these to X.
Indeed, one can check (Exercise!) that the map $\phi: \mathbb{C}[a, b, c, d] \rightarrow \mathbb{C}[x, y]$ given by

$$
a \mapsto x, b \mapsto x y, c \mapsto y^{2}, d \mapsto y^{3}
$$

has kernel ($a^{2} c-b^{2}, a^{3} d-b^{3}, c^{3}-d^{2}$) and hence induces an isomorphism between the algebra $\mathbb{C}[a, b, c, d] /\left(a^{2} c-b^{2}, a^{3} d-b^{3}, c^{3}-d^{2}\right)$ and a subalgebra R of $\mathbb{C}[x, y]$ generated by $x, x y, y^{2}, y^{3}$. As the latter is an integral domain, this in particular implies that $R \simeq A(X)$ and if the function $\frac{d}{c}$ were extendable to a regular function on X its image in $\mathbb{C}[x, y]$ would be y which is not in R, so we get a contradiction.

Exercise 4. Let \mathcal{F} be a sheaf on a topological space X and let Y be a non-empty irreducible closed subset of X. We define the stalk of \mathcal{F} at Y to be

$$
\mathcal{F}_{Y}:=\{(U, \varphi): U \text { is an open subset of } X \text { with } U \cap Y \neq \emptyset \text { and } \varphi \in \mathcal{F}(U)\} / \sim
$$

where $(U, \varphi) \sim\left(U^{\prime}, \varphi^{\prime}\right)$ if and only if there is an open set $V \subset U \cap U^{\prime}$ with $V \cap Y \neq \emptyset$ and $\left.\varphi\right|_{V}=\left.\varphi^{\prime}\right|_{V}$. It therefore describes functions in an arbitrarily small neighborhood of an arbitrary dense open subset of Y.

If Y is a non-empty irreducible subvariety of an affine variety X prove that the stalk $\mathcal{O}_{X, Y}$ of \mathcal{O}_{X} at Y is a K-algebra isomorphic to the localization $A(X)_{I(Y)}$ (hence giving a geometric meaning to this algebraic localization).
Solution. Consider the map

$$
\Psi: A(X)_{I(Y)} \rightarrow \mathcal{O}_{X, Y}, \frac{f}{g} \mapsto\left[\left(D(g), x \mapsto \frac{f(x)}{g(x)}\right)\right]
$$

First note that $g \notin I(Y)$ implies $D(g) \cap Y \neq \emptyset$, so the map is well-defined, and it's easy to check that it is a K-algebra morphism. For injectivity, assume $\Psi(f / g)=0$ then this means that $\Psi(f / g)$ must vanish on some small open set $V \subset D(g)$ with $V \cap Y \neq \emptyset$. Shrinking it further we can take V to be a distinguished open subset $D(h)$ of some point $a \in V \cap Y$. Then $D(h) \subseteq D(g)$ implies $V(g) \subseteq V(h)$ and so by the Nullstellensatz we find $m \in \mathbb{N}$ with $h^{m}=g \cdot r \in A(X)$ for some $r \in A(X)$. Since $a \in D(h) \cap Y$ we have $h \notin I(Y)$ and thus also $h^{m} \notin I(Y)$ and $r \notin I(Y)$ since $I(Y)$ is prime. But then we note

$$
0=\left.\Psi\left(\frac{f}{g}\right)\right|_{D(h)}=\frac{f \cdot r}{g \cdot r}=\frac{f \cdot r}{h^{m}} \in \mathcal{O}_{X}(D(h))=A(X)_{h} .
$$

By definition, this means that there exists $M \in \mathbb{N}$ with $f \cdot r \cdot h^{M}=0 \in A(X)$. But $r \cdot h^{M} \notin$ $I(Y)$ and applying the definition again, this shows $f / g=0 \in A(X)_{I(Y)}$, concluding the injectivity part of Ψ.

Conversely, let $[(U, \varphi)] \in \mathcal{O}_{X, Y}$ then again shrinking U further we can assume $U=$ $D(h)$ for $h \notin I(Y)$. But then $\varphi=f / h^{m} \in \mathcal{O}_{X}(D(h))=A(X)_{h}$ and thus $\varphi=\Psi\left(f / h^{m}\right)$ lies in the image of Ψ, proving its surjectivity.

This concludes the proof that Ψ is an isomorphism of K-algebras as desired.

