Exercise Sheet 4

As in class let \mathbb{P}^{1} be the prevariety obtained by gluing two copies of the affine line \mathbb{A}^{1} along the isomorphism $\mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{A}^{1} \backslash\{0\}, x \rightarrow \frac{1}{x}$. By the inclusion of one of the copies, we consider \mathbb{A}^{1} as an open subprevariety of \mathbb{P}^{1}.
Exercise 1. Which of the following ringed spaces are isomorphic over \mathbb{C} ?
a) \mathbb{A}^{1}
b) $V\left(x_{1}^{2}+x_{2}^{2}\right) \subseteq \mathbb{A}^{2}$
c) $V\left(x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right) \backslash\{0\} \subseteq \mathbb{A}^{3}$
d) $V\left(x_{2}^{2}-x_{1}^{2} x_{3}-x_{1}^{3}\right) \backslash\{0\} \subseteq \mathbb{A}_{3}$
e) $V\left(x_{1} x_{2}\right) \subseteq \mathbb{A}^{2}$
f) $\mathbb{A}^{1} \backslash\{1\}$

Solution. The isomorphism classes are $\mathrm{a}, \mathrm{b}=\mathrm{e}, \mathrm{c}=\mathrm{f}, \mathrm{d}$.

- (c=f) We have that $J=\left\langle x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right\rangle$ is a prime ideal with quotient $K\left[x_{1}, x_{2}, x_{3}\right] / J \cong$ $K\left[x_{1}\right]=A\left(\mathbb{A}^{1}\right)$. This proves $J=I(V(J))$ and $A(V(J))=A\left(\mathbb{A}^{1}\right)$ shows $V(J) \cong \mathbb{A}^{1}$. Under this isomorphism, the point $0 \in V(J)$ maps to $0 \in \mathbb{A}^{1}$. Removing it gives $V(J) \backslash\{0\} \cong \mathbb{A}^{1} \backslash\{0\}$.
- (b=e) The map

$$
F: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2},\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}+i x_{2}, x_{1}-i x_{2}\right)
$$

is a morphism since its components are given by regular functions, and it is in fact an isomorphism (with inverse $\left(y_{1}, y_{2}\right) \mapsto\left(1 / 2\left(y_{1}+y_{2}\right), 1 /(2 i)\left(y_{1}-y_{2}\right)\right)$). Moreover we have $F\left(V\left(x_{1}^{2}+x_{2}^{2}\right)\right)=V\left(x_{1} x_{2}\right)$, so the varieties from b$)$ and e) are isomorphic.

- Non-isomorphisms: Both \mathbb{A}^{1} and its open subset $\mathbb{A}^{1} \backslash\{0\}$ are irreducible of dimension 1. On the other hand $V\left(x_{1} x_{2}\right)=V\left(x_{1}\right) \cup V\left(x_{2}\right)$ is reducible of dimension 1 , whereas by Krull's principal ideal theorem, all components of $Y=V\left(x_{2}^{2}-x_{1}^{2} x_{3}-x_{1}^{3}\right)$ are of dimension 2 (which remains true after removing the closed point 0 by Sheet 2, Exercise 5 , applied to the components of Y). This shows that among the isomorphism classes a,b,c,d only a and c could possibly coincide.
It remains to show that \mathbb{A}^{1} and $\mathbb{A}^{1} \backslash\{0\}$ are not isomorphic. If they were, their coordinate rings $R=K[x]$ and $S=K[y]_{y}=K\left[y, y^{-1}\right]$ would have to be isomorphic. Any such isomorphism $K\left[y, y^{-1}\right] \rightarrow K[x]$ would have to send the invertible element y to an invertible element in $K[x]^{\times}$. But $K[x]^{\times}=K^{\times}$, which shows that the image of y would be a non-zero constant $b \in K^{\times}$. But then $y-b$ gets sent to zero, giving a contradiction to the assumed isomorphism.

Exercise 2. Let $f: X \rightarrow Y$ be a morphism of affine varieties and $f^{*}: A(Y) \rightarrow A(X)$ the corresponding homomorphism of the coordinate rings. Are the following statements true or false?
a) f is surjective if and only if f^{*} is injective.
b) f is injective if and only if f^{*} is surjective.
c) If $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is an isomorphism then f is affine linear i.e. of the form $f(x)=a x+b$ for some $a, b \in K$.
d) If $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ is an isomorphism then f is affine linear i.e. it is of the form $f(x)=A x+b$ for some $A \in \operatorname{Mat}(2 \times 2, K)$ and $b \in K^{2}$.

Solution.

a) It's true that f surjective implies f^{*} injective. However, the converse is false: consider the inclusion

$$
\begin{equation*}
f: \mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{A}^{1} \text { with } f^{*}: K[x] \rightarrow K\left[y, y^{-1}\right], x \mapsto y \tag{1}
\end{equation*}
$$

Then f^{*} is injective, but f is not surjective.
b) It's true that f^{*} surjective implies f injective: assume $a, b \in X$ with $a \neq b$ satisfy $f(a)=f(b)$. Then choose a function $\varphi \in A(X)$ with $\varphi(a) \neq \varphi(b)$; this is possible since for $X \subseteq \mathbb{A}^{n}$ there must be a coordinate function $\varphi \in\left\{x_{1}, \ldots, x_{n}\right\}$ for which $\varphi(a) \neq \varphi(b)$. For $\psi \in A(Y)$ with $f^{*} \psi=\varphi$ we then have

$$
\psi(f(a))=\left(f^{*} \psi\right)(a)=\varphi(a) \neq \varphi(b)=\left(f^{*} \psi\right)(b)=\psi(f(b))
$$

which proves $f(a) \neq f(b)$. However, again the map (1) provides a counter-example for the converse direction: f is injective, but f^{*} is not surjective.
c) True: by a result from the lecture, any morphism $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is given by a regular function in $\mathcal{O}_{\mathbb{A}^{1}}\left(\mathbb{A}^{1}\right)=K[x]$, i.e. a polynomial function. Assume that $f \in K[x]$ is an isomorphism with inverse $g \in K[x]$. Then $f(g(x))=x$. But if f, g are of degrees d, e, then $f(g(x))$ is of degree $d \cdot e$, as can be checked by writing f, g as a sum of monomial terms and substituting. So d, e are non-negative integers with $\operatorname{deg}(f(g(x))=d \cdot e=1=\operatorname{deg}(x)$, which forces $d=e=1$. Thus $f(x)=a x+b$ is linear as claimed.
d) False: given any $h \in K[x]$, the function

$$
f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+h\left(x_{1}\right)\right)
$$

is an isomorphism with inverse

$$
g: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}-h\left(x_{1}\right)\right) .
$$

However, in general it is not an affine linear function f as in the question.
Exercise 3. Prove the following statements:
a) Every morphism $\mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ can be extended to a morphism $\mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$.
b) Not every morphism $\mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ can be extended to a morphism $\mathbb{A}^{2} \rightarrow \mathbb{P}^{1}$.
c) Every morphism $\mathbb{P}^{1} \rightarrow \mathbb{A}^{1}$ is constant.

Solution. Let $X_{1}=X_{2}=\mathbb{A}^{1}$ be the two copies of the affine line covering $\mathbb{P}^{1}=X_{1} \cup X_{2}$.
a) Let $f: \mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ be a morphism. If f is constant equal to the map $z \mapsto \infty$, then it can be extended to a constant morphism. Otherwise, let $U_{1}=f^{-1}\left(X_{1}\right) \subseteq \mathbb{A}^{1} \backslash\{0\}$, then since f is not constant equal to ∞ we have that U_{1} is a non-empty open subset of $\mathbb{A}^{1} \backslash\{0\}$. By our knowledge of the open subsets of \mathbb{A}^{1} we then have $U_{1}=\mathbb{A}^{1} \backslash\left\{0, a_{1}, \ldots, a_{r}\right\}$. Then $\left.f\right|_{U_{1}}: U_{1} \rightarrow X_{1}=\mathbb{A}^{1}$ is a morphism, so it is given by a regular function on U_{1}. But $U_{1}=D(g)$ is a distinguished affine open subset, for $g(x)=x\left(x-a_{1}\right) \cdots\left(x-a_{r}\right)$ and so $f(x)=h(x) / g(x)^{m}$ for some $m \in \mathbb{N}$. We distinguish two cases:

- If the order of h at 0 is less or equal than m, the regular function f does not actually have a pole at 0 (after clearing the term x^{m} in the denominator) and thus extends to a regular function \widetilde{f} on $U_{1} \cup\{0\}=\mathbb{A}^{1} \backslash\left\{a_{1}, \ldots, a_{r}\right\}$. The functions f, \tilde{f} agree on the overlaps of their domains of definition, and both define morphisms to $X_{1} \subseteq \mathbb{P}^{1}$. From the lecture, we know that they can then be glued to a morphism on \mathbb{A}^{1} extending the original morphism f.
- If the order of h at 0 is greater than m, we have that $\tilde{f}=1 / f$ is a regular function on some open subset $\widetilde{U} \subseteq U_{1}$ which can be extended over 0 . Checking the gluing definition of \mathbb{P}^{1}, one verifies that the functions

$$
f: \mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{P}^{1} \text { and } \tilde{f}: \widetilde{U} \cup\{0\} \rightarrow X_{2} \subseteq \mathbb{P}^{1}
$$

agree on their overlap and thus glue to a function $\mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$ as desired.
b) Consider the open sets $U_{1}=D\left(x_{1}\right), U_{2}=D\left(x_{2}\right)$ covering $\mathbb{A}^{2} \backslash\{0\}$. Then the functions

$$
U_{1} \rightarrow X_{1} \subseteq \mathbb{P}^{1},\left(x_{1}, x_{2}\right) \mapsto x_{2} / x_{1} \text { and } U_{2} \rightarrow X_{2} \subseteq \mathbb{P}^{1},\left(x_{1}, x_{2}\right) \mapsto x_{1} / x_{2}
$$

agree on their overlaps and glue to a function $f: \mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$. Assume that f could be extended to a morphism $f: \mathbb{A}^{2} \rightarrow \mathbb{P}^{1}$. Consider the points $0, \infty \in \mathbb{P}^{1}$, then $f^{-1}(0), f^{-1}(\infty)$ would be disjoint, Zariski closed subsets of \mathbb{A}^{2}. But by definition, we have that f sends $V\left(x_{2}\right) \backslash\{0\}$ to 0 and $V\left(x_{1}\right) \backslash\{0\}$ to ∞. Thus the same must be true for their Zariski closures $V\left(x_{2}\right), V\left(x_{1}\right)$, but then we get a contradiction, since $0 \in V\left(x_{1}\right) \cap V\left(x_{2}\right)$ must be sent both to 0 and to ∞.
c) The restriction of the morphism $f: \mathbb{P}^{1} \rightarrow \mathbb{A}^{1}$ to X_{1}, X_{2} is given by $f_{1} \in \mathcal{O}_{X_{1}}\left(X_{1}\right)=$ $K[x]$ and $f_{2} \in \mathcal{O}_{X_{2}}\left(X_{2}\right)=K[w]$. By the compatibility on the overlap, these two polynomials must satisfy $f_{1}(1 / x)=f_{2}(x) \in \mathcal{O}_{X_{1}}\left(X_{1} \backslash\{0\}\right)=K[x]_{x}$. Note that $f_{1}(1 / x)$ is a linear combination of $1,1 / x, 1 / x^{2}, \ldots$ and $f_{2}(x)$ is a linear combination of $1, x, x^{2}, \ldots$. However, the rational functions $\ldots, 1 / x^{2}, 1 / x, 1, x, x^{2}, \ldots$ are all linearly independent in $K[x]_{x}$, so this is only possible if f_{1}, f_{2} are constant (and equal). This shows that f is constant itself, finishing the proof.

Exercise 4. If X and Y are affine varieties we have seen that there is a bijection
$\{$ morphisms $X \rightarrow Y\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ K-algebra homomorphisms $\left.\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X}(X)\right\}, \quad f \mapsto f^{*}$.
a) Does this statement still hold if X is an arbitrary prevariety (but Y is still affine)?
b) Does this statement still hold if Y is an arbitrary prevariety (but X is still affine)?

Solution.

a) Yes: choose a cover $\left\{U_{i}: i \in I\right\}$ of X by affine varieties U_{i}, and cover each intersection $U_{i} \cap U_{j}$ by further affine varieties $\left\{V_{i, j, k}: k \in J_{i, j}\right\}$. Then, any morphism $X \rightarrow Y$ gives a collection of morphisms $f_{i}: U_{i} \rightarrow Y$ by restriction. Conversely, such a collection of morphisms glues together if they have compatible restrictions $\left.f_{i}\right|_{V_{i, j, k}}=\left.f_{j}\right|_{V_{i, j, k}}$. This follows from the gluing property of morphisms together with the fact that the $V_{i, j, k}$ cover $U_{i} \cap U_{j}$. To summarize, we have a bijection:

$$
\begin{equation*}
\{\text { morphisms } X \rightarrow Y\} \stackrel{1: 1}{\longleftrightarrow}\left\{\text { morphisms } f_{i}: U_{i} \rightarrow Y:\left.f_{i}\right|_{V_{i, j, k}}=\left.f_{j}\right|_{V_{i, j, k}}\right\} \tag{2}
\end{equation*}
$$

But on the right hand side of (2) we note that all morphisms $U_{i} \rightarrow Y$ and $V_{i, j, k} \rightarrow Y$ that appear now have affine varieties as domain and target. So we can convert the known correspondence and convert them to K-algebra morphisms $g_{i}=f_{i}^{*}$: $\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X}\left(U_{i}\right)$ such that the compositions of g_{i}, g_{j} with the restriction maps to $\mathcal{O}_{X}\left(V_{i, j, k}\right)$ agree for all $k \in J_{i, j}$. Given a section $\varphi \in \mathcal{O}_{Y}(Y)$, the sections $g_{i}(\varphi) \in \mathcal{O}_{X}\left(U_{i}\right)$ and $g_{j}(\varphi) \in \mathcal{O}_{X}\left(U_{j}\right)$ agree on the overlap $U_{i} \cap U_{j}$ (here we use the uniqueness part of the sheaf property of \mathcal{O}_{X} for the cover $\left.U_{i} \cap U_{j}=\bigcup_{k} V_{i, j, k}\right)$. Thus there exists a unique section $\psi \in \mathcal{O}_{X}(X)$ with $\left.\psi\right|_{U_{i}}=g_{i}(\varphi)$, where we use the existence and uniqueness part of the sheaf property for the cover $X=\bigcup_{i} U_{i}$. We define a map $\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X}(X)$ by sending φ to ψ as constructed above. Then one checks that this is a K-algebra homomorphism. All operations above (passing from $f: X \rightarrow Y$ to the collection $g_{i}=f_{i}^{*}$ and then gluing together again to g) were bijections, which finishes the proof.
b) No: take $X=\mathbb{A}^{1}$ and $Y=\mathbb{P}^{1}$, then we have seen above that $\mathcal{O}_{\mathbb{P}^{1}}\left(\mathbb{P}^{1}\right)=K$, so the only K-algebra homomorphism $K=O_{Y}(Y) \rightarrow O_{X}(X)=K[x]$ is given by the canonical inclusion $K \rightarrow K[x]$. However, we know that there are at least two different morphisms $\mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$ given by the inclusions of X_{1}, X_{2}. Thus no bijection as above is possible.

