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Exercise Sheet 4

As in class let P1 be the prevariety obtained by gluing two copies of the affine line A1

along the isomorphism A1 \ {0} → A1 \ {0}, x→ 1
x
. By the inclusion of one of the copies,

we consider A1 as an open subprevariety of P1.

Exercise 1. Which of the following ringed spaces are isomorphic over C?

a) A1

b) V (x21 + x22) ⊆ A2

c) V (x2 − x21, x3 − x31) \ {0} ⊆ A3

d) V (x22 − x21x3 − x31) \ {0} ⊆ A3

e) V (x1x2) ⊆ A2

f ) A1 \ {1}

Solution. The isomorphism classes are a, b=e, c=f, d.

• (c=f) We have that J = ⟨x2−x21, x3−x31⟩ is a prime ideal with quotientK[x1, x2, x3]/J ∼=
K[x1] = A(A1). This proves J = I(V (J)) and A(V (J)) = A(A1) shows V (J) ∼= A1.
Under this isomorphism, the point 0 ∈ V (J) maps to 0 ∈ A1. Removing it gives
V (J) \ {0} ∼= A1 \ {0}.

• (b=e) The map

F : A2 → A2, (x1, x2) 7→ (x1 + ix2, x1 − ix2)

is a morphism since its components are given by regular functions, and it is in fact
an isomorphism (with inverse (y1, y2) 7→ (1/2(y1 + y2), 1/(2i)(y1 − y2))). Moreover
we have F (V (x21 + x22)) = V (x1x2), so the varieties from b) and e) are isomorphic.

• Non-isomorphisms: Both A1 and its open subset A1\{0} are irreducible of dimension
1. On the other hand V (x1x2) = V (x1)∪V (x2) is reducible of dimension 1, whereas
by Krull’s principal ideal theorem, all components of Y = V (x22 − x21x3 − x31) are of
dimension 2 (which remains true after removing the closed point 0 by Sheet 2, Ex-
ercise 5, applied to the components of Y ). This shows that among the isomorphism
classes a,b,c,d only a and c could possibly coincide.

It remains to show that A1 and A1 \ {0} are not isomorphic. If they were, their
coordinate rings R = K[x] and S = K[y]y = K[y, y−1] would have to be isomorphic.
Any such isomorphism K[y, y−1]→ K[x] would have to send the invertible element
y to an invertible element in K[x]×. But K[x]× = K×, which shows that the image
of y would be a non-zero constant b ∈ K×. But then y − b gets sent to zero, giving
a contradiction to the assumed isomorphism.
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Exercise 2. Let f : X → Y be a morphism of affine varieties and f ∗ : A(Y ) → A(X)
the corresponding homomorphism of the coordinate rings. Are the following statements
true or false?

a) f is surjective if and only if f ∗ is injective.

b) f is injective if and only if f ∗ is surjective.

c) If f : A1 → A1 is an isomorphism then f is affine linear i.e. of the form f(x) = ax+b
for some a, b ∈ K.

d) If f : A2 → A2 is an isomorphism then f is affine linear i.e. it is of the form
f(x) = Ax+ b for some A ∈ Mat(2× 2, K) and b ∈ K2.

Solution.

a) It’s true that f surjective implies f ∗ injective. However, the converse is false: con-
sider the inclusion

f : A1 \ {0} → A1 with f ∗ : K[x]→ K[y, y−1], x 7→ y . (1)

Then f ∗ is injective, but f is not surjective.

b) It’s true that f ∗ surjective implies f injective: assume a, b ∈ X with a ̸= b satisfy
f(a) = f(b). Then choose a function φ ∈ A(X) with φ(a) ̸= φ(b); this is possible
since for X ⊆ An there must be a coordinate function φ ∈ {x1, . . . , xn} for which
φ(a) ̸= φ(b). For ψ ∈ A(Y ) with f ∗ψ = φ we then have

ψ(f(a)) = (f ∗ψ)(a) = φ(a) ̸= φ(b) = (f ∗ψ)(b) = ψ(f(b))

which proves f(a) ̸= f(b). However, again the map (1) provides a counter-example
for the converse direction: f is injective, but f ∗ is not surjective.

c) True: by a result from the lecture, any morphism A1 → A1 is given by a regular
function in OA1(A1) = K[x], i.e. a polynomial function. Assume that f ∈ K[x]
is an isomorphism with inverse g ∈ K[x]. Then f(g(x)) = x. But if f, g are of
degrees d, e, then f(g(x)) is of degree d · e, as can be checked by writing f, g as
a sum of monomial terms and substituting. So d, e are non-negative integers with
deg(f(g(x)) = d · e = 1 = deg(x), which forces d = e = 1. Thus f(x) = ax + b is
linear as claimed.

d) False: given any h ∈ K[x], the function

f : A2 → A2, f(x1, x2) = (x1, x2 + h(x1))

is an isomorphism with inverse

g : A2 → A2, g(x1, x2) = (x1, x2 − h(x1)) .

However, in general it is not an affine linear function f as in the question.

Exercise 3. Prove the following statements:
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a) Every morphism A1 \ {0} → P1 can be extended to a morphism A1 → P1.

b) Not every morphism A2 \ {0} → P1 can be extended to a morphism A2 → P1.

c) Every morphism P1 → A1 is constant.

Solution. Let X1 = X2 = A1 be the two copies of the affine line covering P1 = X1 ∪X2.

a) Let f : A1\{0} → P1 be a morphism. If f is constant equal to the map z 7→ ∞, then
it can be extended to a constant morphism. Otherwise, let U1 = f−1(X1) ⊆ A1\{0},
then since f is not constant equal to ∞ we have that U1 is a non-empty open
subset of A1 \ {0}. By our knowledge of the open subsets of A1 we then have
U1 = A1 \ {0, a1, . . . , ar}. Then f |U1 : U1 → X1 = A1 is a morphism, so it is given
by a regular function on U1. But U1 = D(g) is a distinguished affine open subset,
for g(x) = x(x − a1) · · · (x − ar) and so f(x) = h(x)/g(x)m for some m ∈ N. We
distinguish two cases:

• If the order of h at 0 is less or equal than m, the regular function f does not
actually have a pole at 0 (after clearing the term xm in the denominator) and

thus extends to a regular function f̃ on U1 ∪ {0} = A1 \ {a1, . . . , ar}. The

functions f, f̃ agree on the overlaps of their domains of definition, and both
define morphisms to X1 ⊆ P1. From the lecture, we know that they can then
be glued to a morphism on A1 extending the original morphism f .

• If the order of h at 0 is greater than m, we have that f̃ = 1/f is a regular

function on some open subset Ũ ⊆ U1 which can be extended over 0. Checking
the gluing definition of P1, one verifies that the functions

f : A1 \ {0} → P1 and f̃ : Ũ ∪ {0} → X2 ⊆ P1

agree on their overlap and thus glue to a function A1 → P1 as desired.

b) Consider the open sets U1 = D(x1), U2 = D(x2) covering A2 \ {0}. Then the
functions

U1 → X1 ⊆ P1, (x1, x2) 7→ x2/x1 and U2 → X2 ⊆ P1, (x1, x2) 7→ x1/x2

agree on their overlaps and glue to a function f : A2 \ {0} → P1. Assume that f
could be extended to a morphism f : A2 → P1. Consider the points 0,∞ ∈ P1, then
f−1(0), f−1(∞) would be disjoint, Zariski closed subsets of A2. But by definition,
we have that f sends V (x2)\{0} to 0 and V (x1)\{0} to∞. Thus the same must be
true for their Zariski closures V (x2), V (x1), but then we get a contradiction, since
0 ∈ V (x1) ∩ V (x2) must be sent both to 0 and to ∞.

c) The restriction of the morphism f : P1 → A1 to X1, X2 is given by f1 ∈ OX1(X1) =
K[x] and f2 ∈ OX2(X2) = K[w]. By the compatibility on the overlap, these two
polynomials must satisfy f1(1/x) = f2(x) ∈ OX1(X1 \ {0}) = K[x]x. Note that
f1(1/x) is a linear combination of 1, 1/x, 1/x2, . . . and f2(x) is a linear combination of
1, x, x2, . . .. However, the rational functions . . . , 1/x2, 1/x, 1, x, x2, . . . are all linearly
independent in K[x]x, so this is only possible if f1, f2 are constant (and equal). This
shows that f is constant itself, finishing the proof.
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Exercise 4. If X and Y are affine varieties we have seen that there is a bijection

{morphisms X → Y } 1:1←→ {K-algebra homomorphisms OY (Y )→ OX(X)}, f 7→ f ∗.

a) Does this statement still hold if X is an arbitrary prevariety (but Y is still affine)?

b) Does this statement still hold if Y is an arbitrary prevariety (but X is still affine)?

Solution.

a) Yes: choose a cover {Ui : i ∈ I} of X by affine varieties Ui, and cover each inter-
section Ui ∩ Uj by further affine varieties {Vi,j,k : k ∈ Ji,j}. Then, any morphism
X → Y gives a collection of morphisms fi : Ui → Y by restriction. Conversely,
such a collection of morphisms glues together if they have compatible restrictions
fi|Vi,j,k

= fj|Vi,j,k
. This follows from the gluing property of morphisms together with

the fact that the Vi,j,k cover Ui ∩ Uj. To summarize, we have a bijection:

{morphisms X → Y } 1:1←→ {morphisms fi : Ui → Y : fi|Vi,j,k
= fj|Vi,j,k

} (2)

But on the right hand side of (2) we note that all morphisms Ui → Y and Vi,j,k → Y
that appear now have affine varieties as domain and target. So we can convert
the known correspondence and convert them to K-algebra morphisms gi = f ∗

i :
OY (Y ) → OX(Ui) such that the compositions of gi, gj with the restriction maps
to OX(Vi,j,k) agree for all k ∈ Ji,j. Given a section φ ∈ OY (Y ), the sections
gi(φ) ∈ OX(Ui) and gj(φ) ∈ OX(Uj) agree on the overlap Ui ∩ Uj (here we use
the uniqueness part of the sheaf property of OX for the cover Ui ∩ Uj =

⋃
k Vi,j,k).

Thus there exists a unique section ψ ∈ OX(X) with ψ|Ui
= gi(φ), where we use

the existence and uniqueness part of the sheaf property for the cover X =
⋃

i Ui.
We define a map OY (Y )→ OX(X) by sending φ to ψ as constructed above. Then
one checks that this is a K-algebra homomorphism. All operations above (passing
from f : X → Y to the collection gi = f ∗

i and then gluing together again to g) were
bijections, which finishes the proof.

b) No: take X = A1 and Y = P1, then we have seen above that OP1(P1) = K, so
the only K-algebra homomorphism K = OY (Y ) → OX(X) = K[x] is given by
the canonical inclusion K → K[x]. However, we know that there are at least two
different morphisms A1 → P1 given by the inclusions of X1, X2. Thus no bijection
as above is possible.
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