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Exercise Sheet 5

Exercise 1.

a) Compute explicit generators for the ideal I(a) ⊆ K[x0, . . . , xn] of an arbitrary point
a ∈ Pn.

b) Let X = V (x2
1 − x2

2 − 1, x3 − x1) ⊂ A3
C. What are the points at infinity of the

projective closure X ⊂ P3
C, i.e., the points in X\X?

Solution.

a) We claim that the ideal I(a) has generators as follows:

I(a) = ⟨xiaj − xjai : i, j = 0, . . . , n⟩ =: J ⊆ K[x0, . . . , xn] . (1)

The inclusion I(a) ⊇ J is clear from plugging x = a into the generators of J . In
fact, these generators are precisely the 2× 2-minors of the matrix

M =

(
x0 x1 . . . xn

a0 a1 . . . an

)
,

and so they vanish if and only if the matrix M has rank (at most) 1. This is
equivalent to the rows x, a of the matrix to be linearly dependent, or [x] = [a] ∈ Pn.
This proves Vp(J) = {a}. By the projective Nullstellensatz, it then suffices to show
that J is a radical ideal, to conclude I(a) =

√
J = J .

To prove this, we compute R = K[x0, . . . , xn]/J and show that it has no non-trivial
nilpotent elements. Assume without loss of generality that a0 ̸= 0, then we have
[xj] = [x0aj/a0] ∈ R from one of the generators of J . Using this to eliminate the
variables x1, . . . , xn we get an isomorphism

K[x0]
∼−→ R, x0 7→ [x0] .

The inverse of this map is given by

R → K[x0], xj 7→ x0
aj
a0

.

One double-checks that all generators of J map to zero under this map (so it’s well-
defined) and it sends x0 7→ x0, so composing it with the map K[x0] → R gives the
identity on K[x0].

By this argument, we conclude that R ∼= K[x0] is reduced as claimed.
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b) First note that X ⊆ V (x3 − x1) ∼= A2
C ⊆ A3

C is contained in a linear subspace of
codimension 1. The projective closure of this copy of Va(x3−x1) is Vp(x3−x1) ⊆ P3

C
which is the image of the closed embedding

φ : P2
C → P3

C, (x0 : x1 : x2) 7→ (x0 : x1 : x2 : x1)

obtained by setting x3 = x1 in projective coordinates. By basic topology, the closure
of X in P3

C agrees with its closure in Vp(x3 − x1) ∼= P2
C. Thus

X = φ(Y ) for Y = Va(x
2
1 − x2

2 − 1) ⊆ A2
C .

But the ideal of Y is principal, and in that case we saw that the projective closure
Y is cut out by the homogenization of the equation, so Y = Vp(x

2
1 − x2

2 − x2
0).

Then Y \ Y is obtained by imposing the additional equation x0 = 0, leading to
(x1 − x2) · (x1 + x2) = 0 and the solution points Y \ Y = {(0 : 1 : 1), (0 : 1 : −1)}.
Applying the map φ we obtain X \X = {(0 : 1 : 1 : 1), (0 : 1 : −1 : 1)}.

Exercise 2. A line in Pn is a linear subspace of dimension 1.

a) Let L1, L2 ⊂ P3 be two disjoint lines and let a ∈ P3\(L1 ∪ L2). Show that there is
a unique line L ⊂ P3 through a that intersects both L1 and L2.
Hint: Think about the corresponding cones in A4.

b) Is the corresponding statement for lines and points in A3 true as well?

Solution.

a) The cones C(L1), C(L2) ⊆ K4 are 2-dimensional linear subspaces. The assumption
that L1, L2 are disjoint translates to these subspaces intersecting only at {0}, so in
fact K4 = C(L1) ⊕ C(L2) as a vector space. By choosing bases v1, w1 and v2, w2

of C(L1), C(L2), we obtain a basis v1, w1, v2, w2 of K4, and applying a (projective)
linear automorphism, we can assume that C(L1) = ⟨e1, e2⟩ and C(L2) = ⟨e3, e4⟩.
Indeed, such a projective automorphism sends lines to lines, so the question can be
solved after moving L1, L2 to the positions above.

Assume that the intersection points of a line L through a = (a0 : a1 : a2 : a3) with
L1, L2 are given by (c0 : c1 : 0 : 0) and (0 : 0 : c2 : c3). Thus the line L is given by

L = {(λc0 : λc1 : µc2 : µc3) : (λ : µ) ∈ P1} .

The condition a ∈ L is then equivalent to (c0 : c1) = (a0 : a1) ∈ P1 and (c2 : c3) =
(a2 : a3) ∈ P1, hence this is the unique line satisfying the conditions above. Note
here that the points (a0 : a1), (a2, a3) ∈ P1 are well-defined since a /∈ L1 ∪ L2 =
V (x2, x3) ∪ V (x0, x1).

b) No: take L1 = {(t, 0, 0) : t ∈ K} and L2 = {(0, t, 1) : t ∈ K} as well as a = (1, 0, 1).
If there was a line L0 through a meeting L1, L2, then the projective closure L = L0

would meet the projective closures L1, L2 and still go through a. But the unique line
in P3 through a meeting the projective closures of L1, L2 is the projective closure
L = {(s : t : 0 : s) : (s : t) ∈ P1} of L0 = {(t, 0, 1) : t ∈ K}. The line L meets L2

in (0, 0, 1), for (s : t) = (1 : 0), goes through a at (s : t) = (1 : 1) and meets L1 at
(0 : 1 : 0 : 0) for (s : t) = (0 : 1). Since this last intersection point happens outside
of A3 ⊆ P3, the statement of part a) is false in this case when applied to A3 instead
of P3.
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Exercise 3.

a) Prove that a graded ring R is an integral domain if and only if for all homogeneous
elements f, g ∈ R with fg = 0 we have f = 0 or g = 0.

b) Show that a projective variety X is irreducible if and only if its homogeneous coor-
dinate ring S(X) is an integral domain.

Solution.

a) The given condition without the assumption of f, g being homogeneous is the def-
inition of an integral domain, so one direction is obvious. Assume conversely that
we have f = f0 + . . .+ fd and g = g0 + . . .+ ge ∈ R with f · g = 0. We prove that
f = 0 or g = 0 by induction on d+e. The base case d+e = 0 follows by assumption
since then f, g are homogeneous. In the induction step, note that the degree d + e
part of f · g is precisely given by fd · ge, hence again using the assumption we have
fd = 0 or ge = 0. This reduces us to the case where the sum of the degrees of f and
g are at most d+ e− 1, completing the induction.

b) If S(X) is not an integral domain, by part a) we find f, g ∈ S(X) homogeneous
with f, g ̸= 0 but f · g = 0. But then for X1 = VX,p(f) and X2 = VX,p(g) we have
X1 ∪X2 = VX,p(f · g) = X but Xi ⊊ X since f, g /∈ Ip(X).

Conversely, assume that S(X) is an integral domain and that we had a cover X =
X1 ∪ X2 by two closed subsets neither of which is all of X. Let a1, a2 ∈ X with
a1 ∈ X1 \ X2 and a2 ∈ X2 \ X1. Then there must be a homogeneous f1 ∈ IX(X1)
with f1(a2) ̸= 0, since a2 /∈ X1 = VX,p(IX(X1)). Similarly, we find f2 ∈ IX(X2) with
f2(a1) ̸= 0. Then clearly f1, f2 ̸= 0 ∈ S(X), since there are points of X where they
don’t vanish, but f1 · f2 vanishes on X1 ∪ X2 = X, and thus f1 · f2 = 0 ∈ S(X).
This gives a contradiction to S(X) being an integral domain.

Exercise 4. In this exercise we want to show that an intersection of projective varieties
is never empty unless one would expect it to be empty for dimensional reasons — so, e.g.,
the phenomenon of parallel non-intersecting lines in the plane does not occur in projective
space.

a) Let X, Y ⊂ An be pure-dimensional affine varieties. Show that every irreducible
component of X ∩ Y has dimension at least dimX + dimY − n.
Hint: Use diagonals.

b) Now let X ⊆ Pn be a non-empty projective variety. Prove that the dimension of
the cone C(X) ⊂ An+1 is dimX + 1.

c) LetX, Y ⊂ Pn be projective varieties with dimX+dimY ≥ n. Show thatX∩Y ̸= ∅.

Solution.

a) For the diagonal ∆An ⊆ An×An = A2n we have X ∩Y ∼= X ×Y ∩∆An . To see this
one can e.g. use that the map δ : An → An × An, x 7→ (x, x) is a closed embedding
with image ∆ and X ∩ Y = δ−1(X × Y ).
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However, we know that dimX × Y = dimX + dimY and that

∆ = V (x1 − y1, . . . , xn − yn) ⊆ A2n .

So we obtainX∩Y by starting with the spaceX×Y of dimension dimX+dimY and
imposing the n equations xi−yi for i = 1, . . . , n. By Krull’s principal ideal theorem
applied inductively, the dimension of each irreducible component after imposing the
first n′ conditions is at least dimX+dimY −n′, so for n′ = n we obtain the desired
result.
Note: It is possible that the dimension does not go down for all components when
imposing the n′th condition, in the case where this condition vanishes identically on
some components of the previous intersection. This is the reason why we only have
an inequality in the statement.

b) Since X ̸= ∅, we have C(X) ̸= {0} is of dimension at least 1, and hence dimC(X) =
dimC(X) \ {0}.
Proof: Assume that C(X) = C1 ∪ . . . ∪ Cs is an irreducible decomposition, then
dimC(X) = maxi dimCi. Since C(X) ̸= {0}, it contains at least one non-zero
element and thus (since it is a cone) an entire line, proving that dimC(X) ≥ 1.
Now consider C(X) \ {0}, then its irreducible decomposition is given by

C(X) \ {0} = (C1 \ {0}) ∪ . . . ∪ (Cs \ {0}) .

Each Ci \ {0} ⊆ Ci is a non-empty open subset (if it was empty, then Ci = {0},
but this is a contradiction since 0 is contained in some of the other Ci by the cone
property). So by Sheet 2, Exercise 5 b) it has the same dimension as Ci. This shows

dimC(X) \ {0} = max
i

dim(Ci \ {0}) = max
i

dimCi = dimC(X) .

For Ui ⊆ Pn and Vi ⊆ An+1 the loci where the i-th coordinate does not vanish, we
have that X is covered by the open subsets X ∩ Ui and C(X) \ {0} is covered by
C(X)∩ Vi. Since the dimension is the supremum of dimensions of an open cover, it
suffices to show that

dim(X ∩ Ui) + 1 = dim(C(X) ∩ Vi) .

Identifying Ui with the locus V (xi − 1) ⊆ An+1 the above equality just follows from
the isomorphism

(X ∩ Ui)× (A1 \ {0}) ∼−→ C(X) ∩ Vi

given by

((x0, . . . , xi−1, 1, xi+1, . . . , xn), t) 7→ (tx0, . . . , txi−1, t, txi+1, . . . , xn) .

Its inverse is given by

(y0, . . . , yn) 7→ ((y0/yi, . . . , yn/yi), yi) .

We conclude since dim(X ∩ Ui) × (A1 \ {0}) = dim(X ∩ Ui) + dim(A1 \ {0}) =
dim(X ∩ Ui) + 1.
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c) By decomposing X, Y into irreducible components and choosing ones which have
maximal dimension, it suffices to show the statement when X, Y are irreducible
themselves. Then an adaption of the argument in b) shows that C(X), C(Y ) are
irreducible as well. Moreover, we have C(X ∩Y ) = C(X)∩C(Y ) and the origin 0 is
contained in that intersection. Let Z be an irreducible component of C(X)∩C(Y )
containing the origin. Then by part a) we know it has dimension at least

dim(C(X)) + dim(C(Y ))− (n+ 1) = dim(X) + 1 + dim(Y ) + 1− n− 1 ≥ 1 ,

where the first equality uses part b). Thus we have that Z ̸= {0} and for any point
z ∈ Z \ {0} we have that [z] ∈ X ∩ Y ⊆ Pn is a point in the intersection, finishing
the proof.
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