Exercise Sheet 6

Exercise 1. Let $m, n \in \mathbb{N}_{>0}$. Prove:
a) If $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is a morphism and $X \subset \mathbb{P}^{m}$ a hypersurface then every irreducible component of $f^{-1}(X)$ has dimension at least $n-1$.
Hint: Use that locally on an affine cover of \mathbb{P}^{m}, the hypersurface X is cut out by a single equation.
b) Show that any morphism $f: \mathbb{P}^{n} \rightarrow \mathbb{A}^{m}$ is constant.
c) If $n>m$ then every morphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is constant.

Hint: Consider the preimages of the hyperplanes $V\left(x_{i}\right) \subseteq \mathbb{P}^{m}$ under f.
d) $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is not isomorphic to \mathbb{P}^{n+m}.

Solution.

a) Let $\mathbb{P}^{m}=U_{0} \cup \ldots \cup U_{m}$ be the standard cover of the target of f. Then $f^{-1}(X)$ is covered by the open sets $f^{-1}\left(X \cap U_{i}\right)$ for $i=0, \ldots, m$. Thus it suffices to check that every irreducible component of $f^{-1}\left(X \cap U_{i}\right)$ is of dimension at least $n-1$.
We distinguish two cases: if $f^{-1}\left(U_{i}\right)=\emptyset$, then the statement is trivially satisfied since $f^{-1}\left(X \cap U_{i}\right)=\emptyset$. Otherwise, we know that $f^{-1}\left(U_{i}\right) \subseteq \mathbb{P}^{n}$ is a non-empty open subset, and hence irreducible of dimension n. Let $\left\{V_{j}: j \in J\right\}$ be an open cover of $f^{-1}\left(U_{i}\right)$ by affine varieties, which are necessarily irreducible of dimension n. Consider the map

$$
\left.f\right|_{V_{j}}: V_{j} \rightarrow U_{i} \cong \mathbb{A}^{m} .
$$

We know that $X \cap U_{i} \subseteq U_{i} \cong \mathbb{A}^{m}$ is a hypersurface. Since the coordinate ring of \mathbb{A}^{m} is a UFD, its ideal is principal, so $X \cap U_{i}=V(F)$ for $F \in K\left[x_{1}, \ldots, x_{m}\right]$, where x_{1}, \ldots, x_{m} are coordinates on U_{i}. Then

$$
f^{-1}(X) \cap V_{j}=V_{V_{j}}\left(\left(\left.f\right|_{V_{j}}\right)^{*} F\right)
$$

is the vanishing locus of the function $\left(\left.f\right|_{V_{j}}\right)^{*} F \in A\left(V_{j}\right)$. By Krull's principal ideal theorem, every irreducible component of this vanishing locus has dimension at least $\operatorname{dim}\left(V_{j}\right)-1=n-1$, finishing the proof.
b) We have seen that the morphisms $X \rightarrow \mathbb{A}^{m}$ from any prevariety X to affine space \mathbb{A}^{m} are given by a collection of m regular functions on X. Since $X=\mathbb{P}^{n}$ is complete, all regular functions are constant, and so the map f is constant as well.
c) Assume on the contrary that $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is a non-constant map with $n>m$. First, we claim that each of the hyperplanes $V\left(x_{i}\right) \subseteq \mathbb{P}^{m}$ satisfies $H_{i}:=f^{-1} V\left(x_{i}\right) \neq \emptyset$. Otherwise, the map f would factor through the complement $\mathbb{P}^{m} \backslash V\left(x_{i}\right) \cong \mathbb{A}^{m}$. By part b) such a map is then constant, giving a contradiction.
Thus, by part a) we have that all preimages $H_{i} \subseteq \mathbb{P}^{n}$ are non-empty and all of their components have dimension at least $n-1$. For two projective varieties X, Y in \mathbb{P}^{n} whose dimension sums up to at least n, we have proven that their intersection is nonempty, and the proof also implied that its dimension is at least $\operatorname{dim} X+\operatorname{dim} Y-n$. Applying this result iteratively, we see that the intersection $H_{0} \cap \ldots \cap H_{k}$ is nonempty of dimension at least $n-k$. Specializing to $k=m$, we have that $H_{0} \cap \ldots \cap H_{m}$ is of dimension at least $n-(m+1) \geq 0$ and non-empty. But

$$
H_{0} \cap \ldots \cap H_{m}=f^{-1}\left(V\left(x_{0}\right)\right) \cap \ldots \cap f^{-1}\left(V\left(x_{m}\right)\right)=f^{-1}\left(V\left(x_{0}, \ldots, x_{m}\right)\right)=f^{-1}(\emptyset)=\emptyset,
$$

which gives a contradiction.
d) The projection map $\mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}$ is not constant. Since $n+m>n$ this would give a contradiction if we had an isomorphism $\mathbb{P}^{n} \times \mathbb{P}^{m} \cong \mathbb{P}^{n+m}$.

Exercise 2. Let us say that $n+2$ points in \mathbb{P}^{n} are in general position if for any $n+1$ of them their representatives in K^{n+1} are linearly independent.
Now let a_{1}, \ldots, a_{n+2} and b_{1}, \ldots, b_{n+2} be two sets of points in \mathbb{P}^{n} in general position.
a) Show that the collection $A_{1}=e_{0}=(1: 0: \ldots: 0), A_{2}=e_{1}=(0: 1: 0: \ldots: 0), \ldots$, $A_{n+1}=e_{n}=(0: \ldots: 0: 1), A_{n+1}=(1: 1: \ldots: 1)$ is in general position.
b) Show that there is an isomorphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ with $f\left(a_{i}\right)=b_{i}$ for all $i=1, \ldots, n+$ 2.

Solution.

a) The vectors e_{0}, \ldots, e_{n} are the standard basis of K^{n+1} and thus linearly independent. On the other hand, given $e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}, A_{n+1}$ we obtain this standard basis by subtracting the sum of the first n vectors in the collection from A_{n+1} (since this gives the missing vector e_{i}). This corresponds to a row-operation in the matrix with rows $e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}, A_{n+1}$ and since this preserves the rank, we again have that the vectors are linearly independent.
b) It suffices to prove the claim for $a_{i}=A_{i}$ as in part a). Indeed, if the isomorphism $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ sends A_{i} to a_{i} and the isomorphism $g: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ sends A_{i} to b_{i}, then $g \circ f^{-1}$ sends a_{i} to b_{i}.
Since b_{1}, \ldots, b_{n+1} are linearly independent, they form a basis of K^{n+1} and so for any numbers $\lambda_{1}, \ldots, \lambda_{n+1} \in K^{\times}$, the matrix M with columns given by $\lambda_{1} b_{1}, \ldots, \lambda_{n+1} b_{n+1}$ is invertible, and thus gives an isomorphism $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}, x \mapsto M x$. By definition, this sends $A_{i}=e_{i-1}$ to $\left[\lambda b_{i}\right]=\left[b_{i}\right] \in \mathbb{P}^{n}$. On the other hand, it sends A_{n+1} to the vector

$$
\left[\lambda_{1} b_{1}+\ldots+\lambda_{n+1} b_{n+1}\right] \in \mathbb{P}^{n}
$$

On the other hand, there is a unique linear combination of the basis elements b_{1}, \ldots, b_{n+1} giving b_{n+2}. In this linear combination, none of the coefficients λ_{i} of
b_{i} can vanish, since then the $n+1$ vectors $\left\{b_{1}, \ldots, b_{n+2}\right\} \backslash\left\{b_{i}\right\}$ would be linearly dependent, giving a contradiction to the assumption of being in general position. Taking the λ_{i} above to be the coefficients of this unique linear combination, we indeed have $M \cdot A_{n+2}=\left[b_{n+2}\right]$.

Exercise 3. Show by example that the homogeneous coordinate ring of a projective variety is not invariant under isomorphisms i.e., that there are isomorphic projective varieties X, Y such that the graded K-algebras $S(X)$ and $S(Y)$ are not isomorphic.
Solution. We have seen in class (when discussing the projection from a point) that the map

$$
f: X=\mathbb{P}^{1} \rightarrow V_{p}\left(x_{0} x_{2}-x_{1}^{2}\right)=: Y \subseteq \mathbb{P}^{2},(s: t) \mapsto\left(s^{2}: s t: t^{2}\right)
$$

is an isomorphism. The degree 1 part $S(X)_{1}=\langle s, t\rangle$ is of dimension 2. On the other hand, the degree 1 part $S(Y)_{1}=\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ has three generators, and they are linearly independent, since all nonzero elements of $I(Y)=\left\langle x_{0} x_{2}-x_{1}^{2}\right\rangle$ have degree at least 2 and $S(Y)=K\left[x_{0}, x_{1}, x_{2}\right] / I(Y)$. Thus $\operatorname{dim} S(Y)_{1}=3>\operatorname{dim} S(X)_{1}=2$, which shows $S(X) \not \approx S(Y)$ as graded rings (and also not as K-algebras, since $S(Y)$ cannot be generated by two elements over K).
Exercise 4. A conic over a field of characteristic not equal to 2 is an irreducible curve in \mathbb{P}^{2} of degree 2.
a) Using the coefficients of quadratic polynomials show that the set of all conics can be identified with an open subset U of \mathbb{P}^{5}. (One says that U is a moduli space for conics.)
b) Given a point $p \in \mathbb{P}^{2}$ show that the subset of U consisting of all conics passing through p is the zero locus of a linear equation in the homogeneous coordinates of $U \subset \mathbb{P}^{5}$.
c) Given 5 points in \mathbb{P}^{2}, no three of which lie on a line, show that there is a unique conic passing through all these points.

Solution.

a) A quadratic polynomial on \mathbb{P}^{2} is of the form

$$
f=a_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+a_{02} x_{0} x_{2}+a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \in K\left[x_{0}, x_{1}, x_{2}\right] .
$$

Since its vanishing set $C=V(f) \subseteq \mathbb{P}^{2}$ does not change when scaling f, this vanishing set is uniquely determined by the vector

$$
a=\left(a_{00}: a_{01}: a_{02}: a_{11}: a_{12}: a_{22}\right) \in \mathbb{P}^{5}
$$

describing the coefficients of $f=f_{a}$. Moreover, the vanishing set C is an irreducible curve of degree 2 if and only if f is irreducible (and in this case we have $I(C)=\langle f\rangle$, so f up to scaling is uniquely determined by C).
To conclude, we want to show that inside \mathbb{P}^{5}, the locus U of points a such that f_{a} is irreducible is an open set. If f had a factorization $f=f_{1} \cdot f_{2}$, then necessarily f_{1}, f_{2} would have to be homogeneous polynomials, and in order for the factorization to
not be trivial, they would both have to be linear. Thus we see that the complement $\mathbb{P}^{5} \backslash U$ is the image of the morphism

$$
\begin{aligned}
& \Phi: \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{5} \\
&(\underbrace{b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}}_{f_{1}}, \underbrace{c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}}_{f_{2}}) \mapsto f=f_{1} \cdot f_{2} .
\end{aligned}
$$

Here again we identify \mathbb{P}^{2} with the moduli space of linear polynomials (via the coefficient vectors ($b_{0}: b_{1}: b_{2}$) and ($c_{0}: c_{1}: c_{2}$) of f_{1}, f_{2}). One checks that Φ is a morphism, e.g. on an open cover of \mathbb{P}^{5}. Then since \mathbb{P}^{2} is projective, also $\mathbb{P}^{2} \times \mathbb{P}^{2}$ is projective, and thus complete. Hence the image of Φ is closed, and so its complement U is open.
Note: Alternatively, one can show that the set of reducible quadratic polynomials is closed by using that they are described by the vanishing of a suitable discriminant function.
b) For $p=\left(y_{0}: y_{1}: y_{2}\right) \in \mathbb{P}^{2}$ the condition that $p \in C=V\left(f_{a}\right)$ is just given by

$$
a_{00} y_{0}^{2}+a_{01} y_{0} y_{1}+a_{02} y_{0} y_{2}+a_{11} y_{1}^{2}+a_{12} y_{1} y_{2}+a_{22} y_{2}^{2}
$$

Since the y_{i} are fixed numbers, this is just a linear condition on the coordinates $a_{i j}$ on \mathbb{P}^{5}.
c) Intuitively, for each of the points p_{1}, \ldots, p_{5}, the condition that $p_{i} \in V\left(f_{a}\right)$ gives a linear subspace of U of codimension 1. Intersecting these five subspaces, we expect to obtain a linear space of codimension 5, i.e. a single point.
To make this precise: using Exercise 2, we see that the condition of no three points lying on a line exactly means that no three representatives of the points are linearly dependent. Thus the points p_{i} are in general position and we can find an isomorphism $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ sending $p_{1}, p_{2}, p_{3}, p_{4}$ to $A_{1}=(1: 0: 0), A_{2}=(0: 1: 0)$, $A_{3}=(0: 0: 1)$ and $A_{4}=(1: 1: 1)$. Any such isomorphism sends a conic C through the p_{i} to a conic $f(C)$ through $A_{1}, A_{2}, A_{3}, A_{4}$ and $p=f\left(p_{5}\right)=\left(y_{0}: y_{1}: y_{2}\right)$, and this correspondence is a bijection.
So it suffices to solve the problem for the points $A_{1}, A_{2}, A_{3}, A_{4}, p$. Looking at the equation above, the conditions $A_{1}, A_{2}, A_{3} \in V\left(f_{a}\right)$ mean that $a_{00}=a_{11}=a_{22}=0$. Moreover, the condition $A_{4} \in V\left(f_{a}\right)$ implies that $a_{01}+a_{02}+a_{12}=0$. Solving this last equation for $a_{12}=-a_{01}-a_{02}$ the set of quadratic equations whose vanishing set locus contains A_{1}, \ldots, A_{4} is given by f of the form

$$
f=a_{01}\left(x_{0} x_{1}-x_{1} x_{2}\right)+a_{02}\left(x_{0} x_{2}-x_{1} x_{2}\right)
$$

We claim that the additional condition $f(p)=f\left(y_{0}, y_{1}, y_{2}\right)=0$ gives one more linear condition on the coefficients a_{01}, a_{02} and thus we obtain a unique solution for f up to scaling, so that there is a unique quadratic equation f satisfied by the five points. If $f(p)=0$ was not an additional condition, then $f(p)$ would have to vanish as a polynomial in a_{01}, a_{02} and thus we would have

$$
0=y_{0} y_{1}-y_{1} y_{2}=\left(y_{0}-y_{2}\right) y_{1} \text { and } 0=y_{0} y_{2}-y_{1} y_{2}=\left(y_{0}-y_{1}\right) y_{2} .
$$

Going through the cases, these two equations can only be satisfied if $p=\left(y_{0}: y_{1}\right.$: $\left.y_{2}\right) \in\left\{A_{1}, \ldots, A_{4}\right\}$, which gives a contradiction.

We have thus proved that there is a unique quadratic equation f (up to scaling) satisfied by the five points $A_{1}, A_{2}, A_{3}, A_{4}, p$. If f was not irreducible, it would decompose as the product of two linear polynomials $f=f_{1} f_{2}$. But then the five points are contained in the union $L_{1} \cup L_{2}=V\left(f_{1}\right) \cup V\left(f_{2}\right)$ of lines, so one of the two lines must contain at least three points. This gives a contradiction to the assumption.
Fancier argument: Returning to our original proof idea, let $L_{1}, \ldots, L_{5} \subseteq \mathbb{P}^{5}$ be the five linear hyperplanes describing quadratic equations going through the points p_{1}, \ldots, p_{5}. Then for $D=L_{1} \cap \ldots L_{5}$ we know that D is a linear subspace of \mathbb{P}^{5} and the conics we look for are exactly the points in $D \cap U$. We claim that D must consist of a single point, and this point must lie in U.

First, the same argument as above shows that any quadratic equation f satisfied by the five points cannot decompose into two linear factors, by the assumption that no three points p_{i} lie on a line. This shows that D does not intersect the space of reducible quadratic equations, and thus is contained in U. Using a bit more work than above, one can show however that the complement $Y=\mathbb{P}^{5} \backslash U$ is actually a projective hypersurface, i.e. of codimension 1 . If D had dimension at least 1 , there would have to be an intersection point in $D \cap Y$ since D, Y must intersect in \mathbb{P}^{5} by dimension reasons (as seen in a previous exercise). This shows that D is of dimension 0 , and thus a single point (since it is also a linear space). The inclusion $D \subseteq U$ that we already proved above then finishes the argument.

