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Exercise Sheet 6

Exercise 1. Let m,n ∈ N>0. Prove:

a) If f : Pn → Pm is a morphism and X ⊂ Pm a hypersurface then every irreducible
component of f−1(X) has dimension at least n− 1.
Hint: Use that locally on an affine cover of Pm, the hypersurface X is cut out by a
single equation.

b) Show that any morphism f : Pn → Am is constant.

c) If n > m then every morphism f : Pn → Pm is constant.
Hint: Consider the preimages of the hyperplanes V (xi) ⊆ Pm under f .

d) Pn × Pm is not isomorphic to Pn+m.

Solution.

a) Let Pm = U0 ∪ . . . ∪ Um be the standard cover of the target of f . Then f−1(X) is
covered by the open sets f−1(X ∩Ui) for i = 0, . . . ,m. Thus it suffices to check that
every irreducible component of f−1(X ∩ Ui) is of dimension at least n− 1.

We distinguish two cases: if f−1(Ui) = ∅, then the statement is trivially satisfied
since f−1(X ∩ Ui) = ∅. Otherwise, we know that f−1(Ui) ⊆ Pn is a non-empty
open subset, and hence irreducible of dimension n. Let {Vj : j ∈ J} be an open
cover of f−1(Ui) by affine varieties, which are necessarily irreducible of dimension
n. Consider the map

f |Vj
: Vj → Ui

∼= Am .

We know that X ∩ Ui ⊆ Ui
∼= Am is a hypersurface. Since the coordinate ring of

Am is a UFD, its ideal is principal, so X ∩Ui = V (F ) for F ∈ K[x1, . . . , xm], where
x1, . . . , xm are coordinates on Ui. Then

f−1(X) ∩ Vj = VVj
((f |Vj

)∗F )

is the vanishing locus of the function (f |Vj
)∗F ∈ A(Vj). By Krull’s principal ideal

theorem, every irreducible component of this vanishing locus has dimension at least
dim(Vj)− 1 = n− 1, finishing the proof.

b) We have seen that the morphisms X → Am from any prevariety X to affine space
Am are given by a collection of m regular functions on X. Since X = Pn is complete,
all regular functions are constant, and so the map f is constant as well.
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c) Assume on the contrary that f : Pn → Pm is a non-constant map with n > m. First,
we claim that each of the hyperplanes V (xi) ⊆ Pm satisfies Hi := f−1V (xi) ̸= ∅.
Otherwise, the map f would factor through the complement Pm \ V (xi) ∼= Am. By
part b) such a map is then constant, giving a contradiction.

Thus, by part a) we have that all preimages Hi ⊆ Pn are non-empty and all of their
components have dimension at least n− 1. For two projective varieties X, Y in Pn

whose dimension sums up to at least n, we have proven that their intersection is non-
empty, and the proof also implied that its dimension is at least dimX +dimY − n.
Applying this result iteratively, we see that the intersection H0 ∩ . . . ∩ Hk is non-
empty of dimension at least n−k. Specializing to k = m, we have that H0∩ . . .∩Hm

is of dimension at least n− (m+ 1) ≥ 0 and non-empty. But

H0∩ . . .∩Hm = f−1(V (x0))∩ . . .∩f−1(V (xm)) = f−1(V (x0, . . . , xm)) = f−1(∅) = ∅ ,

which gives a contradiction.

d) The projection map Pn × Pm → Pn is not constant. Since n + m > n this would
give a contradiction if we had an isomorphism Pn × Pm ∼= Pn+m.

Exercise 2. Let us say that n + 2 points in Pn are in general position if for any n + 1
of them their representatives in Kn+1 are linearly independent.
Now let a1, . . . , an+2 and b1, . . . , bn+2 be two sets of points in Pn in general position.

a) Show that the collection A1 = e0 = (1 : 0 : . . . : 0), A2 = e1 = (0 : 1 : 0 : . . . : 0), . . .,
An+1 = en = (0 : . . . : 0 : 1), An+1 = (1 : 1 : . . . : 1) is in general position.

b) Show that there is an isomorphism f : Pn → Pn with f(ai) = bi for all i = 1, . . . , n+
2.

Solution.

a) The vectors e0, . . . , en are the standard basis of Kn+1 and thus linearly independent.
On the other hand, given e0, . . . , ei−1, ei+1, . . . , en, An+1 we obtain this standard basis
by subtracting the sum of the first n vectors in the collection from An+1 (since this
gives the missing vector ei). This corresponds to a row-operation in the matrix with
rows e0, . . . , ei−1, ei+1, . . . , en, An+1 and since this preserves the rank, we again have
that the vectors are linearly independent.

b) It suffices to prove the claim for ai = Ai as in part a). Indeed, if the isomorphism
f : Pn → Pn sends Ai to ai and the isomorphism g : Pn → Pn sends Ai to bi, then
g ◦ f−1 sends ai to bi.

Since b1, . . . , bn+1 are linearly independent, they form a basis of Kn+1 and so for any
numbers λ1, . . . , λn+1 ∈ K×, the matrixM with columns given by λ1b1, . . . , λn+1bn+1

is invertible, and thus gives an isomorphism Pn → Pn, x 7→ Mx. By definition, this
sends Ai = ei−1 to [λbi] = [bi] ∈ Pn. On the other hand, it sends An+1 to the vector

[λ1b1 + . . .+ λn+1bn+1] ∈ Pn .

On the other hand, there is a unique linear combination of the basis elements
b1, . . . , bn+1 giving bn+2. In this linear combination, none of the coefficients λi of
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bi can vanish, since then the n + 1 vectors {b1, . . . , bn+2} \ {bi} would be linearly
dependent, giving a contradiction to the assumption of being in general position.
Taking the λi above to be the coefficients of this unique linear combination, we
indeed have M · An+2 = [bn+2].

Exercise 3. Show by example that the homogeneous coordinate ring of a projective
variety is not invariant under isomorphisms i.e., that there are isomorphic projective
varieties X, Y such that the graded K-algebras S(X) and S(Y ) are not isomorphic.

Solution. We have seen in class (when discussing the projection from a point) that the
map

f : X = P1 → Vp(x0x2 − x2
1) =: Y ⊆ P2, (s : t) 7→ (s2 : st : t2)

is an isomorphism. The degree 1 part S(X)1 = ⟨s, t⟩ is of dimension 2. On the other
hand, the degree 1 part S(Y )1 = ⟨x0, x1, x2⟩ has three generators, and they are linearly
independent, since all nonzero elements of I(Y ) = ⟨x0x2 − x2

1⟩ have degree at least 2
and S(Y ) = K[x0, x1, x2]/I(Y ). Thus dimS(Y )1 = 3 > dimS(X)1 = 2, which shows
S(X) ̸∼= S(Y ) as graded rings (and also not asK-algebras, since S(Y ) cannot be generated
by two elements over K).

Exercise 4. A conic over a field of characteristic not equal to 2 is an irreducible curve
in P2 of degree 2.

a) Using the coefficients of quadratic polynomials show that the set of all conics can
be identified with an open subset U of P5. (One says that U is a moduli space for
conics.)

b) Given a point p ∈ P2 show that the subset of U consisting of all conics passing
through p is the zero locus of a linear equation in the homogeneous coordinates of
U ⊂ P5.

c) Given 5 points in P2, no three of which lie on a line, show that there is a unique
conic passing through all these points.

Solution.

a) A quadratic polynomial on P2 is of the form

f = a00x
2
0 + a01x0x1 + a02x0x2 + a11x

2
1 + a12x1x2 + a22x

2
2 ∈ K[x0, x1, x2] .

Since its vanishing set C = V (f) ⊆ P2 does not change when scaling f , this vanishing
set is uniquely determined by the vector

a = (a00 : a01 : a02 : a11 : a12 : a22) ∈ P5

describing the coefficients of f = fa. Moreover, the vanishing set C is an irreducible
curve of degree 2 if and only if f is irreducible (and in this case we have I(C) = ⟨f⟩,
so f up to scaling is uniquely determined by C).

To conclude, we want to show that inside P5, the locus U of points a such that fa is
irreducible is an open set. If f had a factorization f = f1 · f2, then necessarily f1, f2
would have to be homogeneous polynomials, and in order for the factorization to
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not be trivial, they would both have to be linear. Thus we see that the complement
P5 \ U is the image of the morphism

Φ : P2 × P2 → P5

(b0x0 + b1x1 + b2x2︸ ︷︷ ︸
f1

, c0x0 + c1x1 + c2x2︸ ︷︷ ︸
f2

) 7→ f = f1 · f2 .

Here again we identify P2 with the moduli space of linear polynomials (via the
coefficient vectors (b0 : b1 : b2) and (c0 : c1 : c2) of f1, f2). One checks that Φ is a
morphism, e.g. on an open cover of P5. Then since P2 is projective, also P2 × P2 is
projective, and thus complete. Hence the image of Φ is closed, and so its complement
U is open.
Note: Alternatively, one can show that the set of reducible quadratic polynomials is
closed by using that they are described by the vanishing of a suitable discriminant
function.

b) For p = (y0 : y1 : y2) ∈ P2 the condition that p ∈ C = V (fa) is just given by

a00y
2
0 + a01y0y1 + a02y0y2 + a11y

2
1 + a12y1y2 + a22y

2
2 .

Since the yi are fixed numbers, this is just a linear condition on the coordinates aij
on P5.

c) Intuitively, for each of the points p1, . . . , p5, the condition that pi ∈ V (fa) gives a
linear subspace of U of codimension 1. Intersecting these five subspaces, we expect
to obtain a linear space of codimension 5, i.e. a single point.

To make this precise: using Exercise 2, we see that the condition of no three points
lying on a line exactly means that no three representatives of the points are lin-
early dependent. Thus the points pi are in general position and we can find an
isomorphism f : P2 → P2 sending p1, p2, p3, p4 to A1 = (1 : 0 : 0), A2 = (0 : 1 : 0),
A3 = (0 : 0 : 1) and A4 = (1 : 1 : 1). Any such isomorphism sends a conic C through
the pi to a conic f(C) through A1, A2, A3, A4 and p = f(p5) = (y0 : y1 : y2), and
this correspondence is a bijection.

So it suffices to solve the problem for the points A1, A2, A3, A4, p. Looking at the
equation above, the conditions A1, A2, A3 ∈ V (fa) mean that a00 = a11 = a22 = 0.
Moreover, the condition A4 ∈ V (fa) implies that a01 + a02 + a12 = 0. Solving this
last equation for a12 = −a01 − a02 the set of quadratic equations whose vanishing
set locus contains A1, . . . , A4 is given by f of the form

f = a01(x0x1 − x1x2) + a02(x0x2 − x1x2)

We claim that the additional condition f(p) = f(y0, y1, y2) = 0 gives one more linear
condition on the coefficients a01, a02 and thus we obtain a unique solution for f up
to scaling, so that there is a unique quadratic equation f satisfied by the five points.
If f(p) = 0 was not an additional condition, then f(p) would have to vanish as a
polynomial in a01, a02 and thus we would have

0 = y0y1 − y1y2 = (y0 − y2)y1 and 0 = y0y2 − y1y2 = (y0 − y1)y2 .

Going through the cases, these two equations can only be satisfied if p = (y0 : y1 :
y2) ∈ {A1, . . . , A4}, which gives a contradiction.
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We have thus proved that there is a unique quadratic equation f (up to scaling)
satisfied by the five points A1, A2, A3, A4, p. If f was not irreducible, it would
decompose as the product of two linear polynomials f = f1f2. But then the five
points are contained in the union L1 ∪ L2 = V (f1) ∪ V (f2) of lines, so one of the
two lines must contain at least three points. This gives a contradiction to the
assumption.

Fancier argument : Returning to our original proof idea, let L1, . . . , L5 ⊆ P5 be
the five linear hyperplanes describing quadratic equations going through the points
p1, . . . , p5. Then for D = L1 ∩ . . . L5 we know that D is a linear subspace of P5

and the conics we look for are exactly the points in D ∩ U . We claim that D must
consist of a single point, and this point must lie in U .

First, the same argument as above shows that any quadratic equation f satisfied
by the five points cannot decompose into two linear factors, by the assumption that
no three points pi lie on a line. This shows that D does not intersect the space of
reducible quadratic equations, and thus is contained in U . Using a bit more work
than above, one can show however that the complement Y = P5 \ U is actually
a projective hypersurface, i.e. of codimension 1. If D had dimension at least 1,
there would have to be an intersection point in D ∩ Y since D, Y must intersect in
P5 by dimension reasons (as seen in a previous exercise). This shows that D is of
dimension 0, and thus a single point (since it is also a linear space). The inclusion
D ⊆ U that we already proved above then finishes the argument.
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