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Exercise Sheet 7

Exercise 1. Let X ⊆ P3 be the degree-3 Veronese embedding of P1, i.e., the image of
the morphism

P1 → P3, (x0 : x1)→ (y0 : y1 : y2 : y3) = (x3
0 : x

2
0x1 : x0x

2
1 : x

3
1).

Moreover, let a = (0 : 0 : 1 : 0) ∈ P3 and L = V (y2) ⊆ P3 and let f be the projection
from a to L.

a) Determine an equation of the curve f(X) in L ∼= P2.

b) Is f : X → f(X) an isomorphism onto its image?

Solution.

a) First, we claim that the projection f : P3 99K P2 is given by f(y0 : y1 : y2 : y3) =
(y0 : y1 : y3). Indeed, the unique line through a and (y0 : y1 : y2 : y3) is given by

{(sy0 : sy1 : sy2 + t : sy3) : (s : t) ∈ P1}

intersecting L = V (y2) at the point (y0 : y1 : 0 : y3) for (s : t) = (1 : −y2).
Identifying L with P2 by sending (y0 : y1 : 0 : y3) ∈ L to (y0 : y1 : y3) ∈ P2 gives the
claimed form of f .

From the form of the morphism g : P1 → P3 given in the exercise, it’s clear that a
is not contained in the image g(P1) = X. Since a is the only point where f is not
defined, the image Y = f(X) = (f ◦ g)(P1) is just the image of the morphism

f ◦ g : P1 → P2, (x0 : x1) 7→ (x3
0 : x

2
0x1 : x

3
1) .

Denote the coordinates of P2 by (z0 : z1 : z2) to avoid confusion. Then from the
formula of f ◦ g we see that Y is contained in the vanishing locus V (z20z2 − z31). In
fact we claim that f ◦g : P1 → V (z20z2−z31) is a bijection, so that Y = V (z20z2−z31).

To prove this, let U2 = {(z0 : z1 : z2) ∈ P2 : z2 ̸= 0}, then

(f ◦ g)−1(U2) = P1 \ {(1 : 0)} ∼= A1.

Then the unique preimage of (z0 : z1 : 1) ∈ V (z20z2 − z31) ∩ U2 is given by (x0 : 1) =
(z0/z1 : 1) if z1 ̸= 0 and (0 : 1) if z1 = 0 (which forces z0 = 0). On the other hand,
the unique preimage of V (z20z2 − z31) ∩ V (z2) = {(1 : 0 : 0)} under f ◦ g is given by
(1 : 0). This shows the claimed bijection f ◦ g : P1 → V (z20z2 − z31).
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b) We have already seen in class that g : P1 → P3 is an isomorphism onto its image X.
Thus f : X → Y is an isomorphism if and only if f ◦ g : P1 → Y is an isomorphism.
But by the analysis above, on the open subset U2

∼= A2 ⊆ P2 the map f ◦ g is given
by

A1 → V (z20 − z31), x0 7→ (x3
0, x

2
0)

in affine coordinates (setting x1 = 1 and z2 = 1). We have seen in class that this map
is not an isomorphism, and since an isomorphism must restrict to an isomorphism
over any open subset of its image, this gives a contradiction.

Exercise 2.

a) For any n, d ∈ N>0, find explicit equations describing the image of the degree-d
Veronese embedding

F : Pn → PN , (xi)i=0,...,n 7→ (zα)α∈Nn+1:
∑

αi=d =

(
xα =

n∏
i=0

xαi
i

)
α

of Pn in PN , where N =
(
n+d
n

)
− 1.

b) Prove that every projective variety is isomorphic to the zero locus of quadratic
polynomials in a projective space.

Solution.

a) Let Nd = {α ∈ Nn+1 :
∑

i αi = d} be the index set of the coordinates of PN . Then
we claim that the image X = F (Pn) ⊆ PN is cut out by the ideal

J = ⟨zα · zβ − zγ · zδ : α, β, γ, δ ∈ Nd with α + β = γ + δ⟩

in the coordinate ring K[zα : α ∈ Nd] of PN . From the formula of F , it’s clear that
X ⊆ V (J) since xα · xβ = xγ · xδ by the assumption α + β = γ + δ.

To show the other inclusion, note first that for dei = (0 : 0 : . . . : 0 : d : 0 : . . . 0) ∈ Nd

we have that X is covered by the open sets D(zdei) ⊆ PN . Indeed, if all zdei vanish
on f(x) this forces xd

i = 0 for all i, giving a contradiction. So let z = (zα)α∈Nd
be a

point in V (J) with zdei ̸= 0, so that by rescaling we can assume zdei = 1. Then we
claim that z = F (x) for x = (z(d−1)ei+ej)j=0,...,n.

We prove the equality zα = F (x)α = xα for all α ∈ Nd by downward-induction
on the i-th entry αi of α. The cases αi = d, d − 1 follow immediately from the
formulas (using zdei = xi = 1). On the other hand, assume the statement is proven
for α ∈ Nd with αi > d′ and consider some α with αi = d′. Then setting β = dei we
find γ, δ ∈ Nd with γi, δi > d′ and α + β = γ + δ.1 But then the defining equation
of J forces zα = zγ · zδ. Since we already showed zγ = xγ, zδ = xδ this implies

zα = xγ+δ = xα+β = xα · xβ︸︷︷︸
=xd

i=1

= F (x)α

finishing the induction step.

1If αj > 0 for some index j ̸= i (which must exist) we can take γ = α+ ei− ej and δ = (d− 1)ei + ej .

Page 2



ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

b) We have seen in class that any projective variety Y ⊆ Pn can be written as Y =
V (f1, . . . , fm) for fi homogeneous of the same degree d. Let fi =

∑
α∈Nd

ci,αx
α.

Then we claim that

Y ∼= V (
∑
α∈Nd

ci,αzα : i = 1, . . . , n)︸ ︷︷ ︸
L

∩F (Pn) ⊆ PN .

Indeed, we know that F : Pn → F (Pn) is an isomorphism, and the pull-back of the
defining equations of L are exactly the defining equations of Y . But L is a linear
subspace of PN , and thus isomorphic to some PN ′

, and then the defining quadratic
equations of F (Pn) found in the previous part of the exercise restrict to quadratic
equations on L, cutting out Y .

Exercise 3. We denote the Plücker coordinates of the Grassmannian G(2, 4) in P5 by
xij for 1 ≤ i < j ≤ 4.

a) Show that G(2, 4) = V (x12x34 − x13x24 + x14x23).

b) Let L ⊆ P3 be an arbitrary line. Show that the set of lines in P3 that intersect L,
considered as a subset of G(2, 4) ⊆ P5, is the zero locus of a homogeneous linear
polynomial.

How many lines in P3 would you expect to intersect four general given lines?

Solution.

a) In the lecture, we showed that the Grassmannian G(2, 4) is cut out by the 3 × 3-
minors of the matrix

M =


x23 −x13 x12 0
x24 −x14 0 x12

x34 0 −x14 x13

0 x34 −x24 x23


As an example, the upper left minor is given by

x23x
2
14 + x13x24(−x14) + x12x34x14 = x14(x12x34 − x13x24 + x14x23)

Thus we have

G(2, 4) ⊆ V (x14) ∪ V (x12x34 − x13x24 + x14x23) .

On the other hand, we know that G(2, 4) is irreducible of dimension 4, and from
Krull’s principal ideal theorem one checks that the same is true for V (x14) and
V (x12x34 − x13x24 + x14x23). Since G(2, 4) is not contained in V (x14), it must be
contained in V (x12x34−x13x24+x14x23), and for dimension reasons this containment
must be an equality.

b) Assume L corresponds to the span Lin(a, b) of two vectors a = (a1, a2, a3, a4) and
b = (b1, b2, b3, b4). Let L′ = Lin(c, d) ∈ G(2, 4) be another line. Then L,L′ meet in
a point if and only if Lin(a, b)∩ Lin(c, d) has dimension at least 1 (and in this case,
any one-dimensional sub-vectorspace contained in this intersection gives a point of
P3 where L,L′ meet.
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Having such a positive-dimensional intersection is equivalent to the vectors a, b, c, d
not being linearly independent, and thus equivalent to the vanishing of the deter-
minant of the matrix

N =


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 .

By expanding this determinant along the first two columns (applying Laplace expan-
sion twice), we see that for fixed ai, bi, the determinant det(N) is a linear polynomial
in the 2 × 2-minors of the last two columns. But these are exactly the Plücker co-
ordinates of the line L′. Thus the condition L ∩ L′ ̸= ∅ is described by a linear
equation in the Plücker coordinates of L′.

Given four general lines L1, . . . , L4, the set of lines in G(2, 4) intersecting each of them
is described by a linear equation in the Plücker coordinates, i.e. a linear subspace
H1, . . . , H4 ⊆ P5 intersected with G(2, 4). The intersection H1 ∩ . . . ∩ H4 is expected
to be a line P1 ⊆ P5. By a), the Grassmannian is then cut out by a quadratic equation in
the Plücker coordinates, which restricts to a quadratic equation on this P1. This has two
zeros, counted with multiplicity, and by the assumption that all lines Li were general, we
expect that these two zeros are distinct, giving exactly two lines L,L′ meeting all lines
Li.
Note: This argument can be made precise to show that there is a non-empty open subset
U in G(2, 4)4 such that for a tuple (L1, L2, L3, L4) ∈ U , there are exactly two lines meeting
all the lines Li.

Exercise 4. Show that the following sets are projective varieties:

a) the incidence correspondence

{(L, a) ∈ G(k, n)×Pn−1 : L ⊆ Pn−1 a (k − 1)-dimensional linear subspace and a ∈ L};

b) the join of two disjoint varieties X, Y ⊆ Pn, i.e., the union of all lines in Pn inter-
secting both X and Y .

Solution.

a) Assume that L = Lin(b1, . . . , bk) is the span of k vectors bi, then the containment
a ∈ L is equivalent to the matrix

M =


a1 b11 . . . bk1
a2 b12 . . . bk2
...

...
an b1n . . . bkn


having rank exactly k (so that the first column a must be linearly dependent on the
last k columns b1, . . . , bk). Since the last k columns are already linearly independent
(by the assumption that L is a point of G(k, n)), this is equivalent to all (k+1)×(k+
1)-minors of M vanishing. Expanding such a minor by the first column using the
Laplace rule, we see that it is a linear combination of products of ai with maximal
minors of the matrix B = (b1, . . . , bk). These minors are the Plücker coordinates
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of L, whereas the ai are the homogeneous coordinates of Pn−1. On the standard
open charts of G(k, n) and Pn−1 these become polynomial equations in the affine
coordinates, so that the incidence correspondence is indeed a Zariski closed subset
of G(k, n)×Pn−1. We have seen that both of these are projective varieties, and that
the product of projective varieties is still projective. Thus the closed subset formed
by the incidence correspondence is also projective.

b) Our first goal is to show that the variety

Z = {L ∈ G(2, n+ 1) : L intersects both X and Y } ⊆ G(2, n+ 1)

of all lines appearing in the definition of the join is projective. To see that, let
I = {(L, a) : a ∈ L} be the incidence correspondence from part a) applied to the
case G(2, n+ 1). Then I is projective and so the product

I2 = I×I = {(L1, a1, L2, a2) : a1 ∈ L1, a2 ∈ L2} ⊆ G(2, n+1)×Pn×G(2, n+1)×Pn

is projective as well. We have two projection morphisms

π1 : I
2 → G(2, n+ 1)×G(2, n+ 1) and π2 : I

2 → Pn × Pn

which remember the pairs (L1, L2) and (a1, a2) respectively. Let ∆ ⊆ G(2, n+ 1)×
G(2, n + 1) be the diagonal and X × Y ⊆ Pn × Pn be the product of X, Y , which
are both closed subsets (here we use that G(2, n) is a variety, and that the product
of two closed embeddings is a closed embedding). Then we have that

π−1
1 (∆) ∩ π−1

2 (X × Y ) = {(L, a1, L, a2) : a1 ∈ L ∩X, a2 ∈ L ∩ Y }

is closed inside I2 and thus projective as well. Our original variety Z at the beginning
is the image of this projective variety under the projection to G(2, n + 1) (e.g. to
the first factor). Since the image of a projective variety under a map to another
variety is still projective, we conclude that Z is projective.

Finally, to obtain the join consider the diagram

G(2, n+ 1)
p1←− I

p2−→ Pn

with p1, p2 the projections to the two factors. Then the join J(X, Y ) is given by

J(X, Y ) = p2(p
−1
1 (Z)) = p2({(L, a) : L intersects both X and Y , a ∈ L} .

Again since Z ⊆ G(2, n + 1) is closed, the closed subset p−1
1 (Z) ⊆ I is projective

and so its image J(X, Y ) under p2 is projective as well.
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