ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

Exercise Sheet 8

Exercise 1. Let A® be the blow-up of A3 at the line L = V(zy,79) = Al. Show that
its exceptional set is isomorphic to A! x P'. When do the strict transforms of two lines
in A3 through L intersect in the blow-up? What is therefore the geometric meaning of
the points in the exceptional set (analogously to the blow-up of a point, in which case the
points of the exceptional set correspond to the directions through the blown-up point)?

Solution. The ideal of the line L is generated by zy, z2, so A3 = Bl,, »,A® is contained in
,’&3 - Y = V(I'lyg — Jfgyl) C A?’ X ]P)l .
As in [Gathmann, Example 9.15] we see that Y has one open patch

{(($1,$2,ZE3), (yl : yQ)) eyY: n 7é 0} = {((1'1,$1?/2,ZL"3), (1 : y2)) : (I17y2’x3) € A3} = A3

and similarly another patch A3 for vy, # 0. Thus Y is irreducible of dimension 3 and thus
for dimension reasons, the containment A* C Y must be an equality.

To get the exceptional divisor, i.e. the preimage of L = V (x1,z5) we set 1, xo to zero
and obtain

E = V($1,$27$1y2 - $23Jl) = V($1,$2) = {(070)} x Al x P! C A® x P

Let L, Ly C A3 be lines through L. If their strict transforms Zl, Z2 meet, then also L, Loy
have to meet (since the map A® — A® sends L; to L;. So assume that Ly, Ly go through
a point in L. By translation along the third coordinate, let’s assume they go through the
origin (0,0,0) € L, and so they are given as

Li = {si(ai1,a;2,a;3) : s; € A'}.

Since none of the two lines are equal to L (because in this case their strict transform is
empty), we have (a;1,a;2) # 0. Then for s; # 0 the corresponding point of L; \ {0} C Y
is given by

((8i@i1, 8ii 9, 8i0:3), (i1 @ a;2)) €Y C A® x P!,

Indeed, the equation x1ys—xay; exactly forces (y1 : yo) = (siai1 @ Siai2) = (a;1 : a;2) € PL.
Taking the limit s; = 0 we obtain the point ((0,0,0) : (a1 : a;2)) € L;. Thus the two
strict transforms meet if and only if (a; : aj2) = (ag; : ags) € PL.

As a geometric interpretation: the lines on the exceptional set parameterize the choice
of a point on L together with a normal direction in K3/{(0,0)} x K = K? up to scaling.
This explains why F = A! x P! = L x P!,

Exercise 2. Show that any irreducible quadric hypersurface () C P™ over a field of
characteristic not equal to 2 is birational to P*~!. Can you give an example of some Q
which is not isomorphic to P*~1?
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Solution. The basic idea to get the birational map @ --» P*~! is to project from a point
po € Q to some hyperplane H = Pn~! C P~
To make our life easier, we can use a projective automorphism of P" to move some
point of @ to po = (1:0:...:0), so without loss of generality we can assume that the
above pyg is contained in (). Then we project to the hyperplane H = V' (x). The resulting
morphism
F:O\{po} =P (xo: w1 1) (21 ..., 2)

is defined away from py. To write down the inverse, let
F = apx + a1xg +as € Klxg, 21, ..., 7)o
be the quadratic equation cutting out @ = V(F). Here
ap € K a1 € Klxy,...,x,]1 and ay € Klxy, ..., T,)2

are the coefficients, seeing F' as a polynomial in xy over K|xy,...,z,|. The containment
po € Q forces F(1,0,...,0) = 0 which implies ap = 0. Then we distinguish two cases:
Case1l: a; =0

Then the equation of I’ does not depend on x( at all. By induction on n we know that
V(ay) C P! is birational to P"72, say by some rational map g : P2 --» V(ay). Then
one can check that

P x P2 Q,((s:t),(yr:ya:..iyn)) = (S0 tyr: ... tyn)

is a birational map. Since P! x P"2 is birational to P*~!, this finishes the proof.
Case 2: a; #0
Then on the locus U = P" 1\ V(a;) C P"! the inverse of the projection f is given by

U= Q,(21,....00) — (—@(“"”) IR :xn) = (—as(2) s 2101(x) : - .. wpar () -

All the components of this map are homogeneous polynomials of degree 2, which don’t
vanish simultaneously (since (x1,...,2,) # 0 and a;(z) # 0 on its domain). Hence by
[Gathmann, Lemma 7.4] this indeed defines a morphism, and by a short calculation it is
the inverse of f. Hence f is birational, as claimed.

For an example of @ which is not isomorphic to P! take Q = V (zox3 — z125) C P3.
Then we have seen in [Gathmann, Example 7.11] that Q = P! x P!, and on Sheet 6,
Exercise 1, we proved that P! x P! 2 P2,

Exercise 3. Let X C A" be an affine variety, and let Y1,Y> C X be irreducible, closed
subsets, none contained in the other. Moreover, let X be the blow-up of X at the ideal
I(Y1) 4+ 1(Y3). Show that the strict transforms of Y; and Y, in X are disjoint.

Solution. Let I(Y1) = (f1,..., fry and I(Y2) = (frs1,..., fris), then of course

](3/1)+I(}3):<f1,,fr+s> S]K[x1>"'vzn]'

-----

sets. Then we find

‘SZ g Z = {((wla s 71771)7 (yb s ayTJrs)) € A" X ]P)TJFSil : y1f3($) = y]fl<37)VZ,j} .
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Claim: i>1 g V(yb s ayr) g Z and }A}Q g v(yr—i-b s ayr—i-s) g Z.
Assuming the claim, we have

%ﬂﬁgv(yh"wyﬂks):@?

since not all coordinates of the point y € Pr+s=! can vanish simultaneously. Thus }71 and
Y5 are indeed disjoint. B _

Proof of claim: We prove the statement for Y;, with Y5 working similarly. By the
assumption that Y] is not contained in Y,, we have that U = Y; \ Y5 C Y] is open, and
thus dense since Y} is irreducible. Let ¢ = 1,...,r, then we claim that y; vanishes at any
point z € U (and thus also on the closure Y] of U in Y}, finishing the proof of the claim).
Since x € U is disjoint from Yo = V' (f,41,... fris) we find an index j € {r+1,...,r + s}
such that f;(x) # 0. But then the equation

yi fix) =y filz)
——~

—~—
#0 =0 as z€Y7

implies y; = 0 as claimed.

Exercise 4. Let J < K]zy,...,z,] be an ideal, and assume that the corresponding affine
variety X = V(J) C A" contains the origin. Consider the blow-up X C A™ C A" x P!
at xq,...,T,, and denote the homogeneous coordinates of P*~! by 41, ..., y,.

a) We know already that A" can be covered by affine spaces, with one coordinate patch
being

P U=A" - A" C A" x P!
(T1,Y2, - Yn) = (1, 2192, - 21Yn), (L iy 1o 2 yn)).

Prove that on this coordinate patch the blow-up X is given as the zero locus of the
polynomials

f($17 T1Y2y - - 7$1yn)

in d
l‘rlnln eg f

for all non-zero f € J, where min deg f denotes the smallest degree of a monomial
in f.

Hint: You can use without proof the following variant of [Gathmann, Exercise 2.23]:

For I,J < K[xy,...,2,) one has V(I)\ V(J) = V(I : J*) where
(I:J°)={f€K[r1,...,x,]: Im e N, g € J" with fge I}.
b) Show that the exceptional set of the blow-up X is
Vo (f"(y): fed) cP i = {0} x P,

where f is the initial term of f, i.e. the sum of all monomials in f of smallest
degree. Consequently, the tangent cone of X at the origin is

CoX =V,(f™: feJ)C A"

Solution.
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a) By definition, the blow-up X is obtained by taking the closure of X \ {0} inside
A" x P"~1 which is automatically contained in A" as seen in _the lecture. Taking
this closure and intersecting with the open patch U = A™ C A™ mentioned above,
is equivalent (by basic topology) to first intersecting with U and then taking the
closure.

By the map i: U = A" — 1&", we have

TV (@, ) = VI (@1, 219, 21y),

SO

iTHXN{OY) =i (V(f:0£ fFe N\ V(ng,...,2))
=V(f(x1, 2199, ..., 21Yn) : 0 #£ f € J) \Y(xl,xlyg, . ,xlyn)j .

=V (z1)

To take the Zariski closure i~1(X \ {0}), we just apply the hint given above, and
we see that this closure is cut out by the ideal

((f(x1,21y2, . 1yn) 0 F f € JT): (2)™) = <f(x1,x1y2,...,x1yn) 0#£ feldy.

in d
xrlnln eg f

b) We check the equality on the open subset U above. To get the exceptional set, we
impose the additional condition z; = 0. Given 0 # f € J with minimal degree d and
total degree e we write its homogeneous decomposition as f = f™ + fy1+...+ fe.
Then we have

f(l‘hxly% s 7x1y’ﬂ) - xffin(lv Y2, .- 7yn)+xcli+1fd+1(]‘7y27 s ay’rL>+‘ : '+x§f€(17y25 s 7yn) .

Dividing by 27"/ — 24 and setting z; = 0, all the terms except the first vanish,

and we have

f(xh‘xly%'-'v'rlyn) in
xmin deg f |$1:0 =/ <1ay27"'7yn)'
1

This is exactly the initial term of f in the affine coordinates Uy, C P"~!, which
proves the first statement.

The second is then just an application of this result to the definition of the tangent
cone at the origin.
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