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Exercise Sheet 8

Exercise 1. Let Ã3 be the blow-up of A3 at the line L = V (x1, x2) ∼= A1. Show that
its exceptional set is isomorphic to A1 × P1. When do the strict transforms of two lines
in A3 through L intersect in the blow-up? What is therefore the geometric meaning of
the points in the exceptional set (analogously to the blow-up of a point, in which case the
points of the exceptional set correspond to the directions through the blown-up point)?

Solution. The ideal of the line L is generated by x1, x2, so Ã3 = Blx1,x2A3 is contained in

Ã3 ⊆ Y = V (x1y2 − x2y1) ⊆ A3 × P1 .

As in [Gathmann, Example 9.15] we see that Y has one open patch

{((x1, x2, x3), (y1 : y2)) ∈ Y : y1 ̸= 0} ∼= {((x1, x1y2, x3), (1 : y2)) : (x1, y2, x3) ∈ A3} ∼= A3

and similarly another patch A3 for y2 ̸= 0. Thus Y is irreducible of dimension 3 and thus
for dimension reasons, the containment Ã3 ⊆ Y must be an equality.

To get the exceptional divisor, i.e. the preimage of L = V (x1, x2) we set x1, x2 to zero
and obtain

E = V (x1, x2, x1y2 − x2y1) = V (x1, x2) = {(0, 0)} × A1 × P1 ⊆ A3 × P1 .

Let L1, L2 ⊆ A3 be lines through L. If their strict transforms L̃1, L̃2 meet, then also L1, L2

have to meet (since the map Ã3 → A3 sends L̃i to Li. So assume that L1, L2 go through
a point in L. By translation along the third coordinate, let’s assume they go through the
origin (0, 0, 0) ∈ L, and so they are given as

Li = {si(ai,1, ai,2, ai,3) : si ∈ A1} .

Since none of the two lines are equal to L (because in this case their strict transform is
empty), we have (ai,1, ai,2) ̸= 0. Then for si ̸= 0 the corresponding point of Li \ {0} ⊆ Y
is given by

((siai,1, siai,2, siai,3), (ai,1 : ai,2)) ∈ Y ⊆ A3 × P1 .

Indeed, the equation x1y2−x2y1 exactly forces (y1 : y2) = (siai,1 : siai,2) = (ai,1 : ai,2) ∈ P1.

Taking the limit si = 0 we obtain the point ((0, 0, 0) : (ai,1 : ai,2)) ∈ L̃i. Thus the two
strict transforms meet if and only if (a1,1 : a1,2) = (a2,1 : a2,2) ∈ P1.

As a geometric interpretation: the lines on the exceptional set parameterize the choice
of a point on L together with a normal direction in K3/{(0, 0)} ×K ∼= K2 up to scaling.
This explains why E ∼= A1 × P1 = L× P1.

Exercise 2. Show that any irreducible quadric hypersurface Q ⊆ Pn over a field of
characteristic not equal to 2 is birational to Pn−1. Can you give an example of some Q
which is not isomorphic to Pn−1?
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Solution. The basic idea to get the birational map Q 99K Pn−1 is to project from a point
p0 ∈ Q to some hyperplane H ∼= Pn−1 ⊆ Pn.

To make our life easier, we can use a projective automorphism of Pn to move some
point of Q to p0 = (1 : 0 : . . . : 0), so without loss of generality we can assume that the
above p0 is contained in Q. Then we project to the hyperplane H = V (x0). The resulting
morphism

f : Q \ {p0} → Pn−1, (x0 : x1 : . . . , xn) 7→ (x1 : . . . , xn)

is defined away from p0. To write down the inverse, let

F = a0x
2
0 + a1x0 + a2 ∈ K[x0, x1, . . . , xn]2

be the quadratic equation cutting out Q = V (F ). Here

a0 ∈ K, a1 ∈ K[x1, . . . , xn]1 and a2 ∈ K[x1, . . . , xn]2

are the coefficients, seeing F as a polynomial in x0 over K[x1, . . . , xn]. The containment
p0 ∈ Q forces F (1, 0, . . . , 0) = 0 which implies a0 = 0. Then we distinguish two cases:
Case 1: a1 = 0
Then the equation of F does not depend on x0 at all. By induction on n we know that
V (a2) ⊆ Pn−1 is birational to Pn−2, say by some rational map g : Pn−2 99K V (a2). Then
one can check that

P1 × Pn−2 99K Q, ((s : t), (y1 : y2 : . . . : yn)) 7→ (s0 : ty1 : . . . : tyn)

is a birational map. Since P1 × Pn−2 is birational to Pn−1, this finishes the proof.
Case 2: a1 ̸= 0
Then on the locus U = Pn−1 \ V (a1) ⊆ Pn−1 the inverse of the projection f is given by

U → Q, (x1, . . . , xn) 7→
(
−a2(x)

a1(x)
: x1 : . . . : xn

)
= (−a2(x) : x1a1(x) : . . . : xna1(x)) .

All the components of this map are homogeneous polynomials of degree 2, which don’t
vanish simultaneously (since (x1, . . . , xn) ̸= 0 and a1(x) ̸= 0 on its domain). Hence by
[Gathmann, Lemma 7.4] this indeed defines a morphism, and by a short calculation it is
the inverse of f . Hence f is birational, as claimed.

For an example of Q which is not isomorphic to Pn−1 take Q = V (x0x3 − x1x2) ⊆ P3.
Then we have seen in [Gathmann, Example 7.11] that Q ∼= P1 × P1, and on Sheet 6,
Exercise 1, we proved that P1 × P1 ̸∼= P2.

Exercise 3. Let X ⊆ An be an affine variety, and let Y1, Y2 ⊆ X be irreducible, closed
subsets, none contained in the other. Moreover, let X̃ be the blow-up of X at the ideal
I(Y1) + I(Y2). Show that the strict transforms of Y1 and Y2 in X̃ are disjoint.

Solution. Let I(Y1) = ⟨f1, . . . , fr⟩ and I(Y2) = ⟨fr+1, . . . , fr+s⟩, then of course

I(Y1) + I(Y2) = ⟨f1, . . . , fr+s⟩ ⊴ K[x1, . . . , xn] .

Thus we can calculate X̃ = Blf1,...,fr+sX as the blow-up at the union of these generator
sets. Then we find

X̃ ⊆ Z = {((x1, . . . , xn), (y1, . . . , yr+s)) ∈ An × Pr+s−1 : yifj(x) = yjfi(x)∀i, j} .
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Claim: Ỹ1 ⊆ V (y1, . . . , yr) ⊆ Z and Ỹ2 ⊆ V (yr+1, . . . , yr+s) ⊆ Z.
Assuming the claim, we have

Ỹ1 ∩ Ỹ2 ⊆ V (y1, . . . , yr+s) = ∅ ,

since not all coordinates of the point y ∈ Pr+s−1 can vanish simultaneously. Thus Ỹ1 and
Ỹ2 are indeed disjoint.
Proof of claim: We prove the statement for Ỹ1, with Ỹ2 working similarly. By the
assumption that Y1 is not contained in Y2, we have that U = Y1 \ Y2 ⊆ Y1 is open, and
thus dense since Y1 is irreducible. Let i = 1, . . . , r, then we claim that yi vanishes at any
point x ∈ U (and thus also on the closure Ỹ1 of U in Ỹ1, finishing the proof of the claim).
Since x ∈ U is disjoint from Y2 = V (fr+1, . . . fr+s) we find an index j ∈ {r+ 1, . . . , r+ s}
such that fj(x) ̸= 0. But then the equation

yi fj(x)︸ ︷︷ ︸
̸=0

= yj fi(x)︸ ︷︷ ︸
=0 as x∈Y1

implies yi = 0 as claimed.

Exercise 4. Let J ⊴ K[x1, . . . , xn] be an ideal, and assume that the corresponding affine

variety X = V (J) ⊆ An contains the origin. Consider the blow-up X̃ ⊆ Ãn ⊆ An × Pn−1

at x1, . . . , xn, and denote the homogeneous coordinates of Pn−1 by y1, . . . , yn.

a) We know already that Ãn can be covered by affine spaces, with one coordinate patch
being

i : U = An → Ãn ⊆ An × Pn−1,

(x1, y2, . . . , yn) 7→ ((x1, x1y2, . . . , x1yn), (1 : y2 : · · · : yn)).

Prove that on this coordinate patch the blow-up X̃ is given as the zero locus of the
polynomials

f(x1, x1y2, . . . , x1yn)

xmin deg f
1

for all non-zero f ∈ J , where min deg f denotes the smallest degree of a monomial
in f .
Hint: You can use without proof the following variant of [Gathmann, Exercise 2.23]:

For I, J ⊴ K[x1, . . . , xn] one has V (I) \ V (J) = V (I : J∞) where

(I : J∞) = {f ∈ K[x1, . . . , xn] : ∃m ∈ N, g ∈ Jm with fg ∈ I} .

b) Show that the exceptional set of the blow-up X̃ is

Vp

(
f in(y) : f ∈ J

)
⊆ Pn−1 ∼= {0} × Pn−1,

where f in is the initial term of f , i.e. the sum of all monomials in f of smallest
degree. Consequently, the tangent cone of X at the origin is

C0X = Va(f
in : f ∈ J) ⊆ An.

Solution.
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a) By definition, the blow-up X̃ is obtained by taking the closure of X \ {0} inside

An × Pn−1, which is automatically contained in Ãn as seen in the lecture. Taking
this closure and intersecting with the open patch U = An ⊆ Ãn mentioned above,
is equivalent (by basic topology) to first intersecting with U and then taking the
closure.

By the map i : U = An → Ãn, we have

i−1V (f(x1, . . . , xn)) = V (f(x1, x1y2, . . . , x1yn)),

so

i−1(X \ {0}) = i−1(V (f : 0 ̸= f ∈ J) \ V (x1, . . . , xn))

= V (f(x1, x1y2, . . . , x1yn) : 0 ̸= f ∈ J) \ V (x1, x1y2, . . . , x1yn)︸ ︷︷ ︸
=V (x1)

.

To take the Zariski closure i−1(X \ {0}), we just apply the hint given above, and
we see that this closure is cut out by the ideal

(⟨f(x1, x1y2, . . . , x1yn) : 0 ̸= f ∈ J⟩ : ⟨x1⟩∞) = ⟨f(x1, x1y2, . . . , x1yn)

xmin deg f
1

: 0 ̸= f ∈ J⟩ .

b) We check the equality on the open subset U above. To get the exceptional set, we
impose the additional condition x1 = 0. Given 0 ̸= f ∈ J with minimal degree d and
total degree e we write its homogeneous decomposition as f = f in + fd+1 + . . .+ fe.
Then we have

f(x1, x1y2, . . . , x1yn) = xd
1f

in(1, y2, . . . , yn)+xd+1
1 fd+1(1, y2, . . . , yn)+. . .+xe

1fe(1, y2, . . . , yn) .

Dividing by xmindeg f
1 = xd

1 and setting x1 = 0, all the terms except the first vanish,
and we have

f(x1, x1y2, . . . , x1yn)

xmin deg f
1

|x1=0 = f in(1, y2, . . . , yn) .

This is exactly the initial term of f in the affine coordinates U0 ⊆ Pn−1, which
proves the first statement.

The second is then just an application of this result to the definition of the tangent
cone at the origin.
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