Exercise Sheet 8

Exercise 1. Let $\widetilde{\mathbb{A}}^{3}$ be the blow-up of \mathbb{A}^{3} at the line $L=V\left(x_{1}, x_{2}\right) \cong \mathbb{A}^{1}$. Show that its exceptional set is isomorphic to $\mathbb{A}^{1} \times \mathbb{P}^{1}$. When do the strict transforms of two lines in \mathbb{A}^{3} through L intersect in the blow-up? What is therefore the geometric meaning of the points in the exceptional set (analogously to the blow-up of a point, in which case the points of the exceptional set correspond to the directions through the blown-up point)?

Solution. The ideal of the line L is generated by x_{1}, x_{2}, so $\widetilde{\mathbb{A}}^{3}=\mathrm{Bl}_{x_{1}, x_{2}} \mathbb{A}^{3}$ is contained in

$$
\widetilde{\mathbb{A}}^{3} \subseteq Y=V\left(x_{1} y_{2}-x_{2} y_{1}\right) \subseteq \mathbb{A}^{3} \times \mathbb{P}^{1}
$$

As in [Gathmann, Example 9.15] we see that Y has one open patch

$$
\left\{\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}: y_{2}\right)\right) \in Y: y_{1} \neq 0\right\} \cong\left\{\left(\left(x_{1}, x_{1} y_{2}, x_{3}\right),\left(1: y_{2}\right)\right):\left(x_{1}, y_{2}, x_{3}\right) \in \mathbb{A}^{3}\right\} \cong \mathbb{A}^{3}
$$

and similarly another patch \mathbb{A}^{3} for $y_{2} \neq 0$. Thus Y is irreducible of dimension 3 and thus for dimension reasons, the containment $\widetilde{\mathbb{A}}^{3} \subseteq Y$ must be an equality.

To get the exceptional divisor, i.e. the preimage of $L=V\left(x_{1}, x_{2}\right)$ we set x_{1}, x_{2} to zero and obtain

$$
E=V\left(x_{1}, x_{2}, x_{1} y_{2}-x_{2} y_{1}\right)=V\left(x_{1}, x_{2}\right)=\{(0,0)\} \times \mathbb{A}^{1} \times \mathbb{P}^{1} \subseteq \mathbb{A}^{3} \times \mathbb{P}^{1}
$$

Let $L_{1}, L_{2} \subseteq \mathbb{A}^{3}$ be lines through L. If their strict transforms $\widetilde{L}_{1}, \widetilde{L}_{2}$ meet, then also L_{1}, L_{2} have to meet (since the map $\widetilde{\mathbb{A}}^{3} \rightarrow \mathbb{A}^{3}$ sends \widetilde{L}_{i} to L_{i}. So assume that L_{1}, L_{2} go through a point in L. By translation along the third coordinate, let's assume they go through the origin $(0,0,0) \in L$, and so they are given as

$$
L_{i}=\left\{s_{i}\left(a_{i, 1}, a_{i, 2}, a_{i, 3}\right): s_{i} \in \mathbb{A}^{1}\right\} .
$$

Since none of the two lines are equal to L (because in this case their strict transform is empty), we have ($\left.a_{i, 1}, a_{i, 2}\right) \neq 0$. Then for $s_{i} \neq 0$ the corresponding point of $L_{i} \backslash\{0\} \subseteq Y$ is given by

$$
\left(\left(s_{i} a_{i, 1}, s_{i} a_{i, 2}, s_{i} a_{i, 3}\right),\left(a_{i, 1}: a_{i, 2}\right)\right) \in Y \subseteq \mathbb{A}^{3} \times \mathbb{P}^{1}
$$

Indeed, the equation $x_{1} y_{2}-x_{2} y_{1}$ exactly forces $\left(y_{1}: y_{2}\right)=\left(s_{i} a_{i, 1}: s_{i} a_{i, 2}\right)=\left(a_{i, 1}: a_{i, 2}\right) \in \mathbb{P}^{1}$. Taking the limit $s_{i}=0$ we obtain the point $\left((0,0,0):\left(a_{i, 1}: a_{i, 2}\right)\right) \in \widetilde{L}_{i}$. Thus the two strict transforms meet if and only if $\left(a_{1,1}: a_{1,2}\right)=\left(a_{2,1}: a_{2,2}\right) \in \mathbb{P}^{1}$.

As a geometric interpretation: the lines on the exceptional set parameterize the choice of a point on L together with a normal direction in $K^{3} /\{(0,0)\} \times K \cong K^{2}$ up to scaling. This explains why $E \cong \mathbb{A}^{1} \times \mathbb{P}^{1}=L \times \mathbb{P}^{1}$.
Exercise 2. Show that any irreducible quadric hypersurface $Q \subseteq \mathbb{P}^{n}$ over a field of characteristic not equal to 2 is birational to \mathbb{P}^{n-1}. Can you give an example of some Q which is not isomorphic to \mathbb{P}^{n-1} ?

Solution. The basic idea to get the birational map $Q \rightarrow \mathbb{P}^{n-1}$ is to project from a point $p_{0} \in Q$ to some hyperplane $H \cong \mathbb{P}^{n-1} \subseteq \mathbb{P}^{n}$.

To make our life easier, we can use a projective automorphism of \mathbb{P}^{n} to move some point of Q to $p_{0}=(1: 0: \ldots: 0)$, so without loss of generality we can assume that the above p_{0} is contained in Q. Then we project to the hyperplane $H=V\left(x_{0}\right)$. The resulting morphism

$$
f: Q \backslash\left\{p_{0}\right\} \rightarrow \mathbb{P}^{n-1},\left(x_{0}: x_{1}: \ldots, x_{n}\right) \mapsto\left(x_{1}: \ldots, x_{n}\right)
$$

is defined away from p_{0}. To write down the inverse, let

$$
F=a_{0} x_{0}^{2}+a_{1} x_{0}+a_{2} \in K\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{2}
$$

be the quadratic equation cutting out $Q=V(F)$. Here

$$
a_{0} \in K, a_{1} \in K\left[x_{1}, \ldots, x_{n}\right]_{1} \text { and } a_{2} \in K\left[x_{1}, \ldots, x_{n}\right]_{2}
$$

are the coefficients, seeing F as a polynomial in x_{0} over $K\left[x_{1}, \ldots, x_{n}\right]$. The containment $p_{0} \in Q$ forces $F(1,0, \ldots, 0)=0$ which implies $a_{0}=0$. Then we distinguish two cases:
Case 1: $a_{1}=0$
Then the equation of F does not depend on x_{0} at all. By induction on n we know that $V\left(a_{2}\right) \subseteq \mathbb{P}^{n-1}$ is birational to \mathbb{P}^{n-2}, say by some rational map $g: \mathbb{P}^{n-2} \rightarrow V\left(a_{2}\right)$. Then one can check that

$$
\mathbb{P}^{1} \times \mathbb{P}^{n-2} \longrightarrow Q,\left((s: t),\left(y_{1}: y_{2}: \ldots: y_{n}\right)\right) \mapsto\left(s_{0}: t y_{1}: \ldots: t y_{n}\right)
$$

is a birational map. Since $\mathbb{P}^{1} \times \mathbb{P}^{n-2}$ is birational to \mathbb{P}^{n-1}, this finishes the proof.
Case 2: $a_{1} \neq 0$
Then on the locus $U=\mathbb{P}^{n-1} \backslash V\left(a_{1}\right) \subseteq \mathbb{P}^{n-1}$ the inverse of the projection f is given by

$$
U \rightarrow Q,\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(-\frac{a_{2}(x)}{a_{1}(x)}: x_{1}: \ldots: x_{n}\right)=\left(-a_{2}(x): x_{1} a_{1}(x): \ldots: x_{n} a_{1}(x)\right) .
$$

All the components of this map are homogeneous polynomials of degree 2, which don't vanish simultaneously (since $\left(x_{1}, \ldots, x_{n}\right) \neq 0$ and $a_{1}(x) \neq 0$ on its domain). Hence by [Gathmann, Lemma 7.4] this indeed defines a morphism, and by a short calculation it is the inverse of f. Hence f is birational, as claimed.

For an example of Q which is not isomorphic to \mathbb{P}^{n-1} take $Q=V\left(x_{0} x_{3}-x_{1} x_{2}\right) \subseteq \mathbb{P}^{3}$. Then we have seen in [Gathmann, Example 7.11] that $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and on Sheet 6 , Exercise 1 , we proved that $\mathbb{P}^{1} \times \mathbb{P}^{1} \neq \mathbb{P}^{2}$.

Exercise 3. Let $X \subseteq \mathbb{A}^{n}$ be an affine variety, and let $Y_{1}, Y_{2} \subseteq X$ be irreducible, closed subsets, none contained in the other. Moreover, let \widetilde{X} be the blow-up of X at the ideal $I\left(Y_{1}\right)+I\left(Y_{2}\right)$. Show that the strict transforms of Y_{1} and Y_{2} in \widetilde{X} are disjoint.

Solution. Let $I\left(Y_{1}\right)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $I\left(Y_{2}\right)=\left\langle f_{r+1}, \ldots, f_{r+s}\right\rangle$, then of course

$$
I\left(Y_{1}\right)+I\left(Y_{2}\right)=\left\langle f_{1}, \ldots, f_{r+s}\right\rangle \unlhd K\left[x_{1}, \ldots, x_{n}\right]
$$

Thus we can calculate $\widetilde{X}=\mathrm{Bl}_{f_{1}, \ldots, f_{r+s}} X$ as the blow-up at the union of these generator sets. Then we find

$$
\widetilde{X} \subseteq Z=\left\{\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{r+s}\right)\right) \in \mathbb{A}^{n} \times \mathbb{P}^{r+s-1}: y_{i} f_{j}(x)=y_{j} f_{i}(x) \forall i, j\right\}
$$

Claim: $\widetilde{Y}_{1} \subseteq V\left(y_{1}, \ldots, y_{r}\right) \subseteq Z$ and $\widetilde{Y}_{2} \subseteq V\left(y_{r+1}, \ldots, y_{r+s}\right) \subseteq Z$.
Assuming the claim, we have

$$
\widetilde{Y}_{1} \cap \widetilde{Y}_{2} \subseteq V\left(y_{1}, \ldots, y_{r+s}\right)=\emptyset
$$

since not all coordinates of the point $y \in \mathbb{P}^{r+s-1}$ can vanish simultaneously. Thus \widetilde{Y}_{1} and \widetilde{Y}_{2} are indeed disjoint.
Proof of claim: We prove the statement for \widetilde{Y}_{1}, with \widetilde{Y}_{2} working similarly. By the assumption that Y_{1} is not contained in Y_{2}, we have that $U=Y_{1} \backslash Y_{2} \subseteq Y_{1}$ is open, and thus dense since Y_{1} is irreducible. Let $i=1, \ldots, r$, then we claim that y_{i} vanishes at any point $x \in U$ (and thus also on the closure \widetilde{Y}_{1} of U in \widetilde{Y}_{1}, finishing the proof of the claim). Since $x \in U$ is disjoint from $Y_{2}=V\left(f_{r+1}, \ldots f_{r+s}\right)$ we find an index $j \in\{r+1, \ldots, r+s\}$ such that $f_{j}(x) \neq 0$. But then the equation

$$
y_{i} \underbrace{f_{j}(x)}_{\neq 0}=y_{j} \underbrace{f_{i}(x)}_{=0 \text { as } x \in Y_{1}}
$$

implies $y_{i}=0$ as claimed.
Exercise 4. Let $J \unlhd \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and assume that the corresponding affine variety $X=V(J) \subseteq \mathbb{A}^{n}$ contains the origin. Consider the blow-up $\widetilde{X} \subseteq \widetilde{\mathbb{A}}^{n} \subseteq \mathbb{A}^{n} \times \mathbb{P}^{n-1}$ at x_{1}, \ldots, x_{n}, and denote the homogeneous coordinates of \mathbb{P}^{n-1} by y_{1}, \ldots, y_{n}.
a) We know already that $\widetilde{\mathbb{A}}^{n}$ can be covered by affine spaces, with one coordinate patch being

$$
\begin{aligned}
i: U=\mathbb{A}^{n} & \rightarrow \widetilde{\mathbb{A}}^{n} \subseteq \mathbb{A}^{n} \times \mathbb{P}^{n-1} \\
\left(x_{1}, y_{2}, \ldots, y_{n}\right) & \mapsto\left(\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right),\left(1: y_{2}: \cdots: y_{n}\right)\right) .
\end{aligned}
$$

Prove that on this coordinate patch the blow-up \widetilde{X} is given as the zero locus of the polynomials

$$
\frac{f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)}{x_{1}^{\min \operatorname{deg} f}}
$$

for all non-zero $f \in J$, where min $\operatorname{deg} f$ denotes the smallest degree of a monomial in f.
Hint: You can use without proof the following variant of [Gathmann, Exercise 2.23]:
For $I, J \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ one has $\overline{V(I) \backslash V(J)}=V\left(I: J^{\infty}\right)$ where

$$
\left(I: J^{\infty}\right)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: \exists m \in \mathbb{N}, g \in J^{m} \text { with } f g \in I\right\}
$$

b) Show that the exceptional set of the blow-up \widetilde{X} is

$$
V_{p}\left(f^{\text {in }}(y): f \in J\right) \subseteq \mathbb{P}^{n-1} \cong\{0\} \times \mathbb{P}^{n-1}
$$

where $f^{\text {in }}$ is the initial term of f, i.e. the sum of all monomials in f of smallest degree. Consequently, the tangent cone of X at the origin is

$$
C_{0} X=V_{a}\left(f^{\text {in }}: f \in J\right) \subseteq \mathbb{A}^{n}
$$

Solution.
a) By definition, the blow-up \widetilde{X} is obtained by taking the closure of $X \backslash\{0\}$ inside $\mathbb{A}^{n} \times \mathbb{P}^{n-1}$, which is automatically contained in $\widetilde{\mathbb{A}}^{n}$ as seen in the lecture. Taking this closure and intersecting with the open patch $U=\mathbb{A}^{n} \subseteq \widetilde{\mathbb{A}}^{n}$ mentioned above, is equivalent (by basic topology) to first intersecting with U and then taking the closure.
By the map $i: U=\mathbb{A}^{n} \rightarrow \widetilde{\mathbb{A}}^{n}$, we have

$$
i^{-1} V\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=V\left(f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)\right)
$$

so

$$
\begin{aligned}
i^{-1}(X \backslash\{0\}) & =i^{-1}\left(V(f: 0 \neq f \in J) \backslash V\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =V\left(f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right): 0 \neq f \in J\right) \backslash \underbrace{V\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)}_{=V\left(x_{1}\right)} .
\end{aligned}
$$

To take the Zariski closure $\overline{i^{-1}(X \backslash\{0\})}$, we just apply the hint given above, and we see that this closure is cut out by the ideal

$$
\left(\left\langle f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right): 0 \neq f \in J\right\rangle:\left\langle x_{1}\right\rangle^{\infty}\right)=\left\langle\frac{f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)}{x_{1}^{\min \operatorname{deg} f}}: 0 \neq f \in J\right\rangle
$$

b) We check the equality on the open subset U above. To get the exceptional set, we impose the additional condition $x_{1}=0$. Given $0 \neq f \in J$ with minimal degree d and total degree e we write its homogeneous decomposition as $f=f^{\text {in }}+f_{d+1}+\ldots+f_{e}$. Then we have
$f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)=x_{1}^{d} f^{\mathrm{in}}\left(1, y_{2}, \ldots, y_{n}\right)+x_{1}^{d+1} f_{d+1}\left(1, y_{2}, \ldots, y_{n}\right)+\ldots+x_{1}^{e} f_{e}\left(1, y_{2}, \ldots, y_{n}\right)$.
Dividing by $x_{1}^{\min \operatorname{deg} f}=x_{1}^{d}$ and setting $x_{1}=0$, all the terms except the first vanish, and we have

$$
\left.\frac{f\left(x_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right)}{x_{1}^{\min \operatorname{deg} f}}\right|_{x_{1}=0}=f^{\text {in }}\left(1, y_{2}, \ldots, y_{n}\right) .
$$

This is exactly the initial term of f in the affine coordinates $U_{0} \subseteq \mathbb{P}^{n-1}$, which proves the first statement.
The second is then just an application of this result to the definition of the tangent cone at the origin.

