Exercise Sheet 9

Exercise 1. Prove the projective Jacobi criterion:
Let $X \subseteq \mathbb{P}^{n}$ be a projective variety with ideal $I(X)=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, and let $a \in X$. Then X is smooth at a if and only if the rank of the $r \times(n+1)$ Jacobi matrix

$$
J=\left(\frac{\partial f_{i}}{\partial x_{j}}(a)\right)_{i, j}
$$

is at least $n-\operatorname{codim}_{X}\{a\}$.
Hint: Show and use that

$$
\sum_{i=0}^{n} x_{i} \cdot \frac{\partial f}{\partial x_{i}}=d f
$$

for every homogeneous polynomial $f \in K\left[x_{0}, \ldots, x_{n}\right]$ of degree d.
Solution. We first prove the hint: since both sides are linear in f, we can reduce to the case where f is a monomial $f=x^{\mathbf{e}}=x_{0}^{e_{0}} \cdots x_{n}^{e_{n}}$, for which we calculate:

$$
\sum_{i=0}^{n} x_{i} \cdot \frac{\partial f}{\partial x_{i}}=\sum_{i=0}^{n} e_{i} \cdot \underbrace{x_{i} \cdot x_{0}^{e_{0}} \cdots x_{i}^{e_{i}-1} \cdots x_{n}^{e_{n}}}_{=x^{\mathrm{e}}}=x^{\mathbf{e}} \cdot \underbrace{\sum_{i=0}^{n} e_{i}}_{=d}=f \cdot d
$$

To check the smoothness of X at a let us assume that e.g. $a_{0} \neq 0$. Then we can reduce the problem to the affine Jacobi criterion on $U_{0}=\left\{x \in \mathbb{P}^{n}: x_{0} \neq 0\right\}$. Here X is cut out by the dehomogenizations $f_{j}^{i}\left(x_{1}, \ldots, x_{n}\right)=f_{j}\left(1, x_{1}, \ldots, x_{n}\right)$ of the generators of $I(X)$. Picking a representative of $a \in X \subseteq \mathbb{P}^{n}$ with $a_{0}=1$ we see that columns $j=1, \ldots, n$ of the matrix J are exactly the affine Jacobian matrix J_{a} of $X \cap U_{0}$. The 0 -th column containing the derivatives $\partial f_{i} / \partial x_{0}(a)$ seems redundant and like it could potentially lead to a bigger rank. However, using the hint for f_{i} (which is homogeneous of some degree d_{i}) and evaluating at a, we see that

$$
\sum_{j=0}^{n} a_{j} \cdot \frac{\partial f_{i}}{\partial x_{j}}(a)=d_{i} f_{i}(a)=0
$$

This shows that taking the linear combination $\sum_{j} a_{j} c_{j}$ of the columns c_{j} of J gives zero. Since the coefficient a_{0} of the zeroth column c_{0} is nonzero, it is linearly dependent from the others. Thus the rank of J (at $a)$ equals the rank of the matrix J_{a} from the affine Jacobi criterion [Gathmann, Proposition 10.11]. Thus the result follows from that criterion.
Exercise 2. For $k \in \mathbb{N}_{>0}$ let X_{k} be the complex singular affine curve

$$
X_{k}:=V\left(x_{2}^{2}-x_{1}^{2 k+1}\right) \subseteq \mathbb{A}_{\mathbb{C}}^{2}
$$

and denote by $\widetilde{X}_{k} \subseteq \widetilde{\mathbb{A}}^{2}$ the blow-ups of X_{k} and \mathbb{A}^{2} at the origin, respectively.
a) Use suitable coordinates on $\widetilde{\mathbb{A}}^{2}$ to determine all k for which \widetilde{X}_{k} is smooth.
b) Show that X_{k} is not isomorphic to X_{l} if $k \neq l$.

Hint: Follow the idea of [Gathmann, Example 10.16].

Solution.

a) Following [Gathmann, Example 10.16] as suggested, we can use coordinates $\left(\left(x_{1}, x_{2}\right),\left(y_{1}\right.\right.$: $\left.y_{2}\right)$) on $\widetilde{\mathbb{A}}_{\mathbb{C}}^{2}$, and we look at the chart $y_{1} \neq 0$ with coordinates x_{1}, y_{2}. Applying [Gathmann, Exercise 9.22 (a)] the blow-up in this chart is then given by

$$
\widetilde{X}_{k}=V\left(\frac{\left(x_{1} y_{2}\right)^{2}-x_{1}^{2 k+1}}{x_{1}^{2}}\right)=V(\underbrace{y_{2}^{2}-x_{1}^{2(k-1)+1}}_{=: g})
$$

The exceptional set, obtained by setting $x_{1}=0$, then contains the single point $((0,0),(1: 0))$. The affine Jacobi matrix (for the coordinates x_{1}, y_{2} around that point) is given by

$$
\left(\partial g / \partial x_{1} \partial g / \partial y_{2}\right)(0,0)=\left(-(2(k-1)+1) x_{1}^{2 k-2} \quad 2 y_{2}\right)(0,0)= \begin{cases}(10) & \text { for } k=1 \\ (00) & \text { for } k>1\end{cases}
$$

By the affine Jacobi criterion, we see that \widetilde{X}_{k} is smooth at $((0,0),(1: 0))$ if and only if $k=1$ (in which case we are looking at the example treated in [Gathmann, Example 10.16], which was seen to be smooth everywhere). Thus \widetilde{X}_{k} is smooth if and only $k=1$.
b) All the varieties X_{k} are have a unique singular point, sitting at the origin. Moreover, as shown in part a), the blow-up \widetilde{X}_{k} at this singular point has an exceptional set consisting of a single point, which is singular if and only if $k=1$. Even better, as the form of g above shows, this singular point has a neighborhood isomorphic to the curve X_{k-1}. Thus we can iterate the blow-up procedure, always blowing up the remaining singular point. Then we can uniquely reconstruct the index k of X_{k} as the number of times we have to blow up before we obtain a smooth curve. Since this number is uniquely determined like this, any isomorphism $X_{k} \cong X_{l}$ would have to imply $k=l$.

Exercise 3. Let $n \geq 2$. Prove:

a) Every smooth hypersurface in \mathbb{P}^{n} is irreducible.
b) A general hypersurface in $\mathbb{P}_{\mathbb{C}}^{n}$ is smooth (and thus by a) irreducible). More precisely, for a given $d \in \mathbb{N}_{>0}$ the vector space $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$ has dimension

$$
\binom{n+d}{n}
$$

and so the space of all homogeneous degree-d polynomials in x_{0}, \ldots, x_{n} modulo scalars can be identified with the projective space $\mathbb{P}_{\mathbb{C}}^{\left({ }_{\mathbb{C}}^{\left.\binom{n+d}{n}-1\right)} \text {. Show that the subset }\right.}$ of this projective space of all (classes of) polynomials f such that f is irreducible and $V_{p}(f)$ is smooth is dense and open.

Solution.

a) Assume X was a smooth reducible hypersurface, with at least two different irreducible components X_{1}, X_{2}. By definition of a hypersurface, both of them have dimension $n-1$. We claim that they must intersect at some point $a \in \mathbb{P}^{n}$. Indeed, their dimensions satisfy

$$
\operatorname{dim} X_{i}+\operatorname{dim} X_{j}=2 n-2 \geq n \text { as } n \geq 2
$$

and so by [Gathmann, Exercise 6.31] their intersection is non-empty. But we have seen ([Gathmann, Remark 10.10]) that smooth varieties are locally irreducible, giving a contradiction to X being smooth at $a \in X_{1} \cap X_{2}$.
b) Let Poly $_{d, n}=\mathbb{P}_{\mathbb{C}}^{\left(\binom{n+d}{n}-1\right)}$ be the space of polynomials $0 \neq f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$ up to scaling. We have the universal hypersurface

$$
\mathcal{X}_{d, n}=\left\{([f], a) \in \text { Poly }_{d, n} \times \mathbb{P}^{n}: f(a)=0\right\} \xrightarrow{\pi} \text { Poly }_{d, n} .
$$

Inside $\mathcal{X}_{d, n}$ consider the closed subset $\mathcal{X}_{d, n}^{\text {sing }}$ of pairs $([f], a)$ cut out by the condition that the Jacobi matrix J from Exercise 1 vanishes. We claim that the locus of $[f]$ such that f is reducible or $V_{p}(f)$ is singular is given by $\pi\left(\mathcal{X}_{d, n}^{\text {sing }}\right)$. Since π is a closed map, this would prove that this locus is closed. Moreover, its open complement contains the equation $[f]=\left[x_{0}^{d}+\ldots+x_{n}^{d}\right]$ of the Fermat hypersurface by [Gathmann Example 10.21] and thus is non-empty (here we use that we work over \mathbb{C}). Since Poly $_{d, n}$ is irreducible, this would finish the proof.

To show the claim, first assume that $0 \neq f$ is not irreducible. Then either it contains multiple irreducible factors (in which case $V_{p}(f)$ is not smooth by a)) or it is a power of a lower-degree polynomial. In both cases (either by Exercise 1 or by a direct calculation), the Jacobi matrix vanishes. Here we use that $X=V_{p}(f)$ is of pure dimension $n-1$, so that $\operatorname{codim}_{X}\{a\}=n-1$ for all $a \in X$.
Likewise, if f is irreducible but $V_{p}(f)$ is not smooth at some point a, we have that $([f], a) \in \mathcal{X}_{d, n}^{\text {sing }}$. On the other hand, if f is irreducible and $V_{p}(f)$ is smooth, then no point $([f], a)$ in $\pi^{-1}([f])$ can be contained in $\mathcal{X}_{d, n}^{\text {sing }}$. This finishes the claim and thus the proof.

Exercise 4. Assume that the characteristic of K is not equal to 2 , and let f be a homogeneous polynomial in $K\left[x_{0}, x_{1}, x_{2}\right]$ whose partial derivatives $\frac{\partial f}{\partial x_{i}}$ for $i=0,1,2$ do not vanish simultaneously at any point of $X=V_{p}(f) \subseteq \mathbb{P}^{2}$. Then the image of the morphism

$$
F: X \rightarrow \mathbb{P}^{2}, a \mapsto\left(\frac{\partial f}{\partial x_{0}}(a): \frac{\partial f}{\partial x_{1}}(a): \frac{\partial f}{\partial x_{2}}(a)\right)
$$

is called the dual curve to X.
a) Find a geometric description of F. What does it mean geometrically if $F(a)=F(b)$ for two distinct points a, b in X ?
b) If X is a conic (i.e., an irreducible curve of degree 2), prove that its dual $F(X)$ is also a conic.
c) For any five lines in \mathbb{P}^{2} in general position, show that there is a unique conic in \mathbb{P}^{2} that is tangent to all of them.
Hint: You can use without proof that the dual curve of the dual curve is again the original curve.

Solution.

a) We see the target \mathbb{P}^{2} of F as the space of lines inside \mathbb{P}^{2} by identifying $\left(b_{0}: b_{1}\right.$: $\left.b_{2}\right) \in \mathbb{P}^{2}$ with the line

$$
L_{b}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}: b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}=0\right\} .
$$

Then we claim that the line $L_{F(a)}$ is precisely the tangent line to X at a. Indeed, it follows from the hint in Exercise 1 above that $a \in L_{F(a)}$ (by a short calculation), and in affine coordinates one can verify that the tangent space is precisely cut out by the condition from $L_{F(a)}$. Thus $F(a)=F(b)$ if and only if the tangent lines to X at a, b coincide.
b) For X a conic, all partial derivatives $\partial f / \partial x_{i}$ are linear polynomials, so the map above is linear. We claim that it is in fact the restriction of a projective automorphism, i.e. the corresponding matrix is invertible. If it wasn't, then there would be a point $A \in \mathbb{P}^{2}$ where all partial derivatives $\partial f / \partial x_{i}(A)$ vanish. But again by the hint from Exercise 1 we would then also have $d \cdot f(A)=2 \cdot f(A)=0$, so $A \in X$, giving a contradiction to the assumption that not all partial derivatives of f vanish at any point of X. Thus the matrix is a projective automorphism, and thus sends a conic to a conic.
c) The condition that the conic X is tangent to five lines L_{1}, \ldots, L_{5} is equivalent to saying that $X^{\vee}=F(X)$ passes through those lines (seen as elements of \mathbb{P}^{2}). By [Gathmann, Exercise 7.30] there is a unique conic X^{\vee} passing through those five general points. But then $X=F\left(X^{\vee}\right)$ is again a conic (by part b) and satisfies $F(X)=X^{\vee}$ by the hint. Moreover, it is the unique such conic since the assignment $X \mapsto X^{\vee}$ is bijective.

