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Exercise Sheet 9

Exercise 1. Prove the projective Jacobi criterion:
Let X ⊆ Pn be a projective variety with ideal I(X) = ⟨f1, . . . , fr⟩, and let a ∈ X. Then
X is smooth at a if and only if the rank of the r × (n+ 1) Jacobi matrix

J =

(
∂fi
∂xj

(a)

)
i,j

is at least n− codimX{a}.
Hint: Show and use that

n∑
i=0

xi ·
∂f

∂xi

= df

for every homogeneous polynomial f ∈ K[x0, . . . , xn] of degree d.

Solution. We first prove the hint: since both sides are linear in f , we can reduce to the
case where f is a monomial f = xe = xe0

0 · · ·xen
n , for which we calculate:

n∑
i=0

xi ·
∂f

∂xi

=
n∑

i=0

ei · xi · xe0
0 · · ·xei−1

i · · ·xen
n︸ ︷︷ ︸

=xe

= xe ·
n∑

i=0

ei︸ ︷︷ ︸
=d

= f · d .

To check the smoothness of X at a let us assume that e.g. a0 ̸= 0. Then we can reduce
the problem to the affine Jacobi criterion on U0 = {x ∈ Pn : x0 ̸= 0}. Here X is cut
out by the dehomogenizations f i

j(x1, . . . , xn) = fj(1, x1, . . . , xn) of the generators of I(X).
Picking a representative of a ∈ X ⊆ Pn with a0 = 1 we see that columns j = 1, . . . , n
of the matrix J are exactly the affine Jacobian matrix Ja of X ∩ U0. The 0-th column
containing the derivatives ∂fi/∂x0(a) seems redundant and like it could potentially lead
to a bigger rank. However, using the hint for fi (which is homogeneous of some degree
di) and evaluating at a, we see that

n∑
j=0

aj ·
∂fi
∂xj

(a) = difi(a) = 0 .

This shows that taking the linear combination
∑

j ajcj of the columns cj of J gives zero.
Since the coefficient a0 of the zeroth column c0 is nonzero, it is linearly dependent from the
others. Thus the rank of J (at a) equals the rank of the matrix Ja from the affine Jacobi
criterion [Gathmann, Proposition 10.11]. Thus the result follows from that criterion.

Exercise 2. For k ∈ N>0 let Xk be the complex singular affine curve

Xk := V (x2
2 − x2k+1

1 ) ⊆ A2
C ,

and denote by X̃k ⊆ Ã2 the blow-ups of Xk and A2 at the origin, respectively.
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a) Use suitable coordinates on Ã2 to determine all k for which X̃k is smooth.

b) Show that Xk is not isomorphic to Xl if k ̸= l.

Hint: Follow the idea of [Gathmann, Example 10.16].

Solution.

a) Following [Gathmann, Example 10.16] as suggested, we can use coordinates ((x1, x2), (y1 :

y2)) on Ã2
C, and we look at the chart y1 ̸= 0 with coordinates x1, y2. Applying [Gath-

mann, Exercise 9.22 (a)] the blow-up in this chart is then given by

X̃k = V

(
(x1y2)

2 − x2k+1
1

x2
1

)
= V (y22 − x

2(k−1)+1
1︸ ︷︷ ︸
=:g

) .

The exceptional set, obtained by setting x1 = 0, then contains the single point
((0, 0), (1 : 0)). The affine Jacobi matrix (for the coordinates x1, y2 around that
point) is given by

(∂g/∂x1 ∂g/∂y2)(0, 0) = (−(2(k − 1) + 1)x2k−2
1 2y2)(0, 0) =

{
(1 0) for k = 1

(0 0) for k > 1 .

By the affine Jacobi criterion, we see that X̃k is smooth at ((0, 0), (1 : 0)) if and
only if k = 1 (in which case we are looking at the example treated in [Gathmann,

Example 10.16], which was seen to be smooth everywhere). Thus X̃k is smooth if
and only k = 1.

b) All the varieties Xk are have a unique singular point, sitting at the origin. Moreover,

as shown in part a), the blow-up X̃k at this singular point has an exceptional set
consisting of a single point, which is singular if and only if k = 1. Even better, as
the form of g above shows, this singular point has a neighborhood isomorphic to
the curve Xk−1. Thus we can iterate the blow-up procedure, always blowing up the
remaining singular point. Then we can uniquely reconstruct the index k of Xk as
the number of times we have to blow up before we obtain a smooth curve. Since
this number is uniquely determined like this, any isomorphism Xk

∼= Xl would have
to imply k = l.

Exercise 3. Let n ≥ 2. Prove:

a) Every smooth hypersurface in Pn is irreducible.

b) A general hypersurface in Pn
C is smooth (and thus by a) irreducible). More precisely,

for a given d ∈ N>0 the vector space C[x0, . . . , xn]d has dimension(
n+ d

n

)
,

and so the space of all homogeneous degree-d polynomials in x0, . . . , xn modulo

scalars can be identified with the projective space P((
n+d
n )−1)

C . Show that the subset
of this projective space of all (classes of) polynomials f such that f is irreducible
and Vp(f) is smooth is dense and open.
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Solution.

a) Assume X was a smooth reducible hypersurface, with at least two different irre-
ducible components X1, X2. By definition of a hypersurface, both of them have
dimension n− 1. We claim that they must intersect at some point a ∈ Pn. Indeed,
their dimensions satisfy

dimXi + dimXj = 2n− 2 ≥ n as n ≥ 2

and so by [Gathmann, Exercise 6.31] their intersection is non-empty. But we have
seen ([Gathmann, Remark 10.10]) that smooth varieties are locally irreducible, giv-
ing a contradiction to X being smooth at a ∈ X1 ∩X2.

b) Let Polyd,n = P((
n+d
n )−1)

C be the space of polynomials 0 ̸= f ∈ C[x0, . . . , xn]d up to
scaling. We have the universal hypersurface

Xd,n = {([f ], a) ∈ Polyd,n × Pn : f(a) = 0} π−→ Polyd,n .

Inside Xd,n consider the closed subset X sing
d,n of pairs ([f ], a) cut out by the condition

that the Jacobi matrix J from Exercise 1 vanishes. We claim that the locus of [f ]
such that f is reducible or Vp(f) is singular is given by π(X sing

d,n ). Since π is a closed
map, this would prove that this locus is closed. Moreover, its open complement
contains the equation [f ] = [xd

0+ . . .+xd
n] of the Fermat hypersurface by [Gathmann

Example 10.21] and thus is non-empty (here we use that we work over C). Since
Polyd,n is irreducible, this would finish the proof.

To show the claim, first assume that 0 ̸= f is not irreducible. Then either it
contains multiple irreducible factors (in which case Vp(f) is not smooth by a)) or it
is a power of a lower-degree polynomial. In both cases (either by Exercise 1 or by
a direct calculation), the Jacobi matrix vanishes. Here we use that X = Vp(f) is of
pure dimension n− 1, so that codimX{a} = n− 1 for all a ∈ X.

Likewise, if f is irreducible but Vp(f) is not smooth at some point a, we have that
([f ], a) ∈ X sing

d,n . On the other hand, if f is irreducible and Vp(f) is smooth, then no

point ([f ], a) in π−1([f ]) can be contained in X sing
d,n . This finishes the claim and thus

the proof.

Exercise 4. Assume that the characteristic of K is not equal to 2, and let f be a
homogeneous polynomial in K[x0, x1, x2] whose partial derivatives ∂f

∂xi
for i = 0, 1, 2 do

not vanish simultaneously at any point of X = Vp(f) ⊆ P2. Then the image of the
morphism

F : X → P2, a 7→
(

∂f

∂x0

(a) :
∂f

∂x1

(a) :
∂f

∂x2

(a)

)
is called the dual curve to X.

a) Find a geometric description of F . What does it mean geometrically if F (a) = F (b)
for two distinct points a, b in X?

b) If X is a conic (i.e., an irreducible curve of degree 2), prove that its dual F (X) is
also a conic.
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c) For any five lines in P2 in general position, show that there is a unique conic in P2

that is tangent to all of them.
Hint: You can use without proof that the dual curve of the dual curve is again the
original curve.

Solution.

a) We see the target P2 of F as the space of lines inside P2 by identifying (b0 : b1 :
b2) ∈ P2 with the line

Lb = {(x0 : x1 : x2) ∈ P2 : b0x0 + b1x1 + b2x2 = 0} .

Then we claim that the line LF (a) is precisely the tangent line to X at a. Indeed,
it follows from the hint in Exercise 1 above that a ∈ LF (a) (by a short calculation),
and in affine coordinates one can verify that the tangent space is precisely cut out
by the condition from LF (a). Thus F (a) = F (b) if and only if the tangent lines to
X at a, b coincide.

b) ForX a conic, all partial derivatives ∂f/∂xi are linear polynomials, so the map above
is linear. We claim that it is in fact the restriction of a projective automorphism,
i.e. the corresponding matrix is invertible. If it wasn’t, then there would be a point
A ∈ P2 where all partial derivatives ∂f/∂xi(A) vanish. But again by the hint from
Exercise 1 we would then also have d · f(A) = 2 · f(A) = 0, so A ∈ X, giving a
contradiction to the assumption that not all partial derivatives of f vanish at any
point of X. Thus the matrix is a projective automorphism, and thus sends a conic
to a conic.

c) The condition that the conic X is tangent to five lines L1, . . . , L5 is equivalent to
saying that X∨ = F (X) passes through those lines (seen as elements of P2). By
[Gathmann, Exercise 7.30] there is a unique conic X∨ passing through those five
general points. But then X = F (X∨) is again a conic (by part b) and satisfies
F (X) = X∨ by the hint. Moreover, it is the unique such conic since the assignment
X 7→ X∨ is bijective.
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