ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

Exercise Sheet 9

Exercise 1. Prove the projective Jacobi criterion:
Let X C P" be a projective variety with ideal I(X) = (fi,..., f.), and let a € X. Then
X is smooth at a if and only if the rank of the r x (n + 1) Jacobi matrix

1= (g)

1=0

is at least n — codimx{a}.
Hint: Show and use that

for every homogeneous polynomial f € K|z, ..., x,] of degree d.

Solution. We first prove the hint: since both sides are linear in f, we can reduce to the
case where f is a monomial f = 2® = g - - - 25, for which we calculate:
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To check the smoothness of X at a let us assume that e.g. ag # 0. Then we can reduce
the problem to the affine Jacobi criterion on Uy = {x € P" : x5 # 0}. Here X is cut
out by the dehomogenizations f;(z1,...,2,) = fj(1,21,...,2,) of the generators of I(X).
Picking a representative of a € X C P" with ayg = 1 we see that columns j = 1,....n
of the matrix J are exactly the affine Jacobian matrix J, of X N U,. The 0-th column
containing the derivatives 0f;/0x¢(a) seems redundant and like it could potentially lead
to a bigger rank. However, using the hint for f; (which is homogeneous of some degree
d;) and evaluating at a, we see that

> a5 52 @) = difita) = 0.

J=0

This shows that taking the linear combination ; ajc; of the columns ¢; of J gives zero.
Since the coefficient ag of the zeroth column ¢; is nonzero, it is linearly dependent from the
others. Thus the rank of J (at a) equals the rank of the matrix .J, from the affine Jacobi
criterion [Gathmann, Proposition 10.11]. Thus the result follows from that criterion.

Exercise 2. For k € Ny let X be the complex singular affine curve
Xp = V(3 — 22 C AZ

and denote by X; C A2 the blow-ups of X, and A2 at the origin, respectively.
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a) Use suitable coordinates on A2 to determine all k for which X}, is smooth.

b) Show that X} is not isomorphic to X if k # [.

Hint: Follow the idea of [Gathmann, Example 10.16].

Solution.

a) Following [Gathmann, Example 10.16] as suggested, we can use coordinates ((x1, z2), (y1 :
Yy2)) on A%, and we look at the chart y; # 0 with coordinates 1, yo. Applying [Gath-
mann, Exercise 9.22 (a)] the blow-up in this chart is then given by

- 2 2k+1
R (07
—_—

2
U

]

The exceptional set, obtained by setting x; = 0, then contains the single point
((0,0),(1 : 0)). The affine Jacobi matrix (for the coordinates 1, y, around that
point) is given by

10) fork=1
8g/0z1 0g/0y2)(0,0) = (—(2(k — 1) + 1)x3" ™ 2115)(0,0) = (
(99/0m1 09/092)(0,0) = (205 = 1) + D 2)(0.0) = 0 4
By the affine Jacobi criterion, we see that X is smooth at ((0,0), (1 : 0)) if and
only if £ = 1 (in which case we are looking at the example treated in [Gathmann,
Example 10.16], which was seen to be smooth everywhere). Thus X}, is smooth if
and only k£ = 1.

b) All the varieties X} are have a unique singular point, sitting at the origin. Moreover,
as shown in part a), the blow-up )?k at this singular point has an exceptional set
consisting of a single point, which is singular if and only if £ = 1. Even better, as
the form of g above shows, this singular point has a neighborhood isomorphic to
the curve X;_;. Thus we can iterate the blow-up procedure, always blowing up the
remaining singular point. Then we can uniquely reconstruct the index k of X as
the number of times we have to blow up before we obtain a smooth curve. Since
this number is uniquely determined like this, any isomorphism X; = X; would have
to imply k& = [.

Exercise 3. Let n > 2. Prove:

a) Every smooth hypersurface in P" is irreducible.

b) A general hypersurface in P¢ is smooth (and thus by a) irreducible). More precisely,

for a given d € Nyg the vector space Clxy, ..., z,|q has dimension
n+d
n )
and so the space of all homogeneous degree-d polynomials in zg,...,x, modulo

n

n+d\ _
scalars can be identified with the projective space P<<c< ) 1). Show that the subset
of this projective space of all (classes of) polynomials f such that f is irreducible
and V,(f) is smooth is dense and open.
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Solution.

a) Assume X was a smooth reducible hypersurface, with at least two different irre-
ducible components X;, X5. By definition of a hypersurface, both of them have
dimension n — 1. We claim that they must intersect at some point a € P". Indeed,
their dimensions satisfy

dimX; +dimX; =2n -2 >nasn > 2

and so by [Gathmann, Exercise 6.31] their intersection is non-empty. But we have
seen ([Gathmann, Remark 10.10]) that smooth varieties are locally irreducible, giv-
ing a contradiction to X being smooth at a € X; N X5.

n+d\ _
b) Let Poly,,, = }P’é( 2 be the space of polynomials 0 # f € Clxy,...,x,]qs up to
scaling. We have the universal hypersurface

Xgn = {([f].a) € Poly,,, x P" : f(a) =0} = Poly,,, .

Inside Xy, consider the closed subset X jfsg of pairs ([f], a) cut out by the condition
that the Jacobi matrix J from Exercise 1 vanishes. We claim that the locus of [f]
such that f is reducible or V,(f) is singular is given by W(X;j;lg). Since 7 is a closed
map, this would prove that this locus is closed. Moreover, its open complement
contains the equation [f] = [#d+. ..+ %] of the Fermat hypersurface by [Gathmann
Example 10.21] and thus is non-empty (here we use that we work over C). Since
Poly, , is irreducible, this would finish the proof.

To show the claim, first assume that 0 # f is not irreducible. Then either it
contains multiple irreducible factors (in which case V,(f) is not smooth by a)) or it
is a power of a lower-degree polynomial. In both cases (either by Exercise 1 or by
a direct calculation), the Jacobi matrix vanishes. Here we use that X = V,(f) is of
pure dimension n — 1, so that codimy{a} =n —1 for all a € X.

Likewise, if f is irreducible but V,(f) is not smooth at some point a, we have that
([f],a) € &35 On the other hand, if f is irreducible and V,(f) is smooth, then no

point ([f],a) in 7~ ([f]) can be contained in X;ff;g. This finishes the claim and thus
the proof.

Exercise 4. Assume that the characteristic of K is not equal to 2, and let f be a
homogeneous polynomial in K[z, x1, 2] whose partial derivatives % for i = 0,1,2 do
not vanish simultaneously at any point of X = V,(f) € P2 Then the image of the

morphism
af ~of ~of
6930 (a) ) 81'1 CL) ’ 8$2 <a>>

F: X 5P aw— (
is called the dual curve to X.

a) Find a geometric description of F'. What does it mean geometrically if F'(a) = F(b)
for two distinct points a, b in X?

b) If X is a conic (i.e., an irreducible curve of degree 2), prove that its dual F(X) is
also a conic.

Page 3



ETH Zurich, Algebraic Geometry, Spring 2024 Lecturer: Johannes Schmitt

c¢) For any five lines in P? in general position, show that there is a unique conic in P?
that is tangent to all of them.
Hint: You can use without proof that the dual curve of the dual curve is again the
original curve.

Solution.

a) We see the target P? of F as the space of lines inside P? by identifying (by : b; :
by) € P? with the line

Ly = {(xg : 71 : 13) € P : byxg + by + byxy = 0} .

Then we claim that the line Lp(,) is precisely the tangent line to X at a. Indeed,
it follows from the hint in Exercise 1 above that a € Lp(, (by a short calculation),
and in affine coordinates one can verify that the tangent space is precisely cut out
by the condition from Lp). Thus F(a) = F(b) if and only if the tangent lines to
X at a, b coincide.

b) For X a conic, all partial derivatives 0f/0z; are linear polynomials, so the map above
is linear. We claim that it is in fact the restriction of a projective automorphism,
i.e. the corresponding matrix is invertible. If it wasn’t, then there would be a point
A € P? where all partial derivatives df/0x;(A) vanish. But again by the hint from
Exercise 1 we would then also have d - f(A) =2 f(A) = 0,s0 A € X, giving a
contradiction to the assumption that not all partial derivatives of f vanish at any
point of X. Thus the matrix is a projective automorphism, and thus sends a conic
to a conic.

¢) The condition that the conic X is tangent to five lines L1, ..., L5 is equivalent to
saying that XV = F(X) passes through those lines (seen as elements of P?). By
[Gathmann, Exercise 7.30] there is a unique conic XV passing through those five
general points. But then X = F(XV) is again a conic (by part b) and satisfies
F(X) = XY by the hint. Moreover, it is the unique such conic since the assignment
X — XV is bijective.
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