## Exercise Sheet 4

Exercise 1. We consider the determinant function det : GL $(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}$. Show that its differential at the identity matrix $I$ is the trace function

$$
D_{I} \operatorname{det}=\operatorname{tr} .
$$

This calculation was used in the lecture to show that the Lie algebra of $\mathrm{SL}(n, \mathbb{R})$ is the set of traceless matrices.

Exercise 2 (Some Lie Algebras). (a) Let $M, N$ be smooth manifolds and let $f: M \rightarrow N$ be a smooth map of constant rank $r$. By the constant rank theorem we know that the level set $L=f^{-1}(q)$ is a regular submanifold of $M$ of dimension $\operatorname{dim} M-r$ for every $q \in N$. Show that one may canonically identify

$$
T_{p} L \cong \operatorname{ker} d_{p} f
$$

for every $p \in L=f^{-1}(q)$.
Hint: Describe elements in $T_{p} L$ as $\gamma^{\prime}(0)$ for a smooth path $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$.
(b) Use part a) to compute the Lie algebras of the following Lie groups: $\mathrm{O}(n, \mathbb{R}), \mathrm{SO}(n, \mathbb{R})$, $\mathrm{O}(p, q), B(n)$ the group of real invertible upper triangular matrices and $N(n)$ the subgroup of $B(n)$ with only ones on the diagonal.

Exercise 3 (One- and two-dimensional Lie Algebras). Classify the one- and two-dimensional real Lie algebras up to Lie algebra isomorphism and realize them as Lie subalgebras of some $\mathfrak{g l}_{n} \mathbb{R}=$ $\mathfrak{g l}\left(\mathbb{R}^{n}\right)$.

Hint: In dimension two one can show that if the Lie algebra is non-abelian then there is a basis $X, Y$ such that $[X, Y]=Y$.

Exercise 4. Let $G$ and $H$ be Lie groups with Lie algebras $\mathfrak{g}$ and $\mathfrak{h}$. Show that the Lie algebra of $G \times H$ can be identified with $\mathfrak{g} \times \mathfrak{h}$ with the bracket

$$
\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]=\left(\left[x_{1}, x_{2}\right]_{\mathfrak{g}},\left[y_{1}, y_{2}\right]_{\mathfrak{h}}\right)
$$

Exercise 5 (Surjectivity of the Matrix Exponential). Let $\operatorname{Exp}: \mathfrak{g l}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n} \rightarrow \mathrm{GL}(n, \mathbb{R})$ be the matrix exponential map given by the power series

$$
\operatorname{Exp}(X):=\sum_{n=0}^{\infty} \frac{X^{n}}{n!}
$$

Consider the Lie subgroup of upper triangular matrices with 1 's on the diagonal $N(n)<\mathrm{GL}(n, \mathbb{R})$ with its Lie algebra $\mathfrak{n}(n)<\mathfrak{g l}(n, \mathbb{R})$ of strictly upper triangular matrices; cf. Exercise 1.

Show that $\left.\operatorname{Exp}\right|_{\mathfrak{n}(n)}: \mathfrak{n}(n) \rightarrow N(n)$ is surjective.
Hint: Consider the partially defined matrix logarithm $\log : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ given by

$$
\log (I+A)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{A^{n}}{n}
$$

Try to give answers to the following questions and then conclude:
What is its radius of convergence $r$ about $I$ ? Why is it a right-inverse of Exp on the ball $B_{r}(I)$ of radius $r$ about $I$ ? Why is there no problem for matrices that are in $N(n)$ but not in $B_{r}(I)$ ?

In order to answer the last question prove that $A^{n}=0$ for all $A \in \mathfrak{n}(n)$.

