Exercise Sheet 7

Exercise 1 (Killing form of $\mathfrak{sl}(2,\mathbb{R})$). Choose a basis of $\mathfrak{sl}(2,\mathbb{R})$ to compute the Killing form $K_{\mathfrak{sl}(2,\mathbb{R})}(X,Y) = 4\mathrm{tr}(XY)$.

Exercise 2 (The Killing form is invariant under the adjoint action). Let G be a connected Lie group and \mathfrak{g} its Lie algebra. Prove that for all $X, Y \in \mathfrak{g}$ and $g \in G$

$$K_{\mathfrak{q}}(\mathrm{Ad}(g)X, \mathrm{Ad}(g)Y) = K_{\mathfrak{q}}(X, Y)$$

<u>Hint:</u> Prove that $\operatorname{ad}(\operatorname{Ad}(g)X) = \operatorname{Ad}(g)\operatorname{ad}(X)\operatorname{Ad}(g)^{-1}$.

Exercise 3 (Solvable Lie group without injective finite-dimensional representation). Consider the three-dimensional Heisenberg group

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}.$$

Note that the center of H is

$$\mathbf{Z}(H) = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbb{R} \right\}.$$

Let D < Z(H) be the following discrete subgroup

$$D := \mathrm{SL}_{3}(\mathbb{Z}) \cap \mathrm{Z}(H) = \left\{ \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}.$$

Check that G := H/D is a connected, solvable Lie group and show that G does not admit a smooth, injective homomorphism into GL(V) for any finite-dimensional \mathbb{C} -vector space V.

<u>Hint</u>: Observe that $Z(H)/D \cong S^1$ and consider its image under a potential representation and show that its image can be conjugated into any small neighborhood of $Id \in GL(n, \mathbb{C})$. Then use the no-small-subgroups property.

Exercise 4 (Complex Lie algebras). Let \mathfrak{g} be a real Lie algebra and $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ the complexification of \mathfrak{g} as a vector space.

(1) Show that the bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ extends uniquely to a \mathbb{C} -bilinear map $[\cdot, \cdot]_{\mathbb{C}} : \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}$ turning $\mathfrak{g}_{\mathbb{C}}$ into a complex Lie algebra.

(2) Show that the canonical injection $\mathfrak{g} \to \mathfrak{g}_{\mathbb{C}}, X \mapsto X \otimes 1$ is a homomorphism of real Lie algebras and, if we identify \mathfrak{g} with its image in $\mathfrak{g}_{\mathbb{C}}$, we have that

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} + i\mathfrak{g}.$$

Express the bracket of $\mathfrak{g}_{\mathbb{C}}$ in this decomposition.

- (3) Show that \mathfrak{g} is solvable if and only if $\mathfrak{g}_{\mathbb{C}}$ is solvable,
- (4) Show that \mathfrak{g} is nilpotent if and only if $\mathfrak{g}_{\mathbb{C}}$ is nilpotent.