
Dr. D. Semola Introduction to Lie Groups FS 2024

Some extra exercises

Here we publish some extra exercises that are not part of this Lie groups course, but are still related
to the topics discussed. Exercise 1 gives an example of a topological group whose topology is very
different from the Euclidean and the compact-open topology-examples we have seen. Exercise 2
is related to functional analysis. Exercise 3 states that topological groups can be embedded in
unimodular topological groups.

Exercise 1 (p-adic Integers Zp). Let p ∈ N be a prime number. Recall that the p-adic integers Zp

can be seen as the subspace{
(an)n∈N ∈

∏
n∈N

Z/pnZ : an+1 ≡ an (mod pn)

}
of the infinite product

∏
n∈N Z/pnZp carrying the induced topology. Note that each Z/pnZ carries

the discrete topology and
∏

n∈N Z/pnZ is endowed with the resulting product topology.

a) Show that the image of Z via the embedding

ι :Z → Zp,

x 7→ (x (mod pn))n∈N

is dense. In particular, Zp is a compactification of Z.

b) Show that the 2-adic integers Z2 are homeomorphic to the “middle thirds” cantor set

C =

{ ∞∑
n=1

εn3
−n : εn ∈ {0, 2} for each n ∈ N

}
⊂ [0, 1].

Exercise 2 (Unitary Operators). LetH be a Hilbert space and U(H) its group of unitary operators.
Show that the weak operator topology coincides with the strong operator topology on U(H).

Hint: Recall that a sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator
T with respect to the weak operator topology if

λ(Tnx) → λ(Tx) (n → ∞)

for every linear functional λ ∈ H∗ and every x ∈ H.

A sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator T with respect
to the strong operator topology if

Tnx → Tx (n → ∞)

for every x ∈ H.
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Exercise 3. For every locally compact Hausdorff group G, there is a unimodular locally compact
Hausdorff group G′ and a closed subgroup H ′ < G′ such that G ∼= H ′ are isomorphic.

This exercise is from the book [Nac76], page 100.

Exercise 4. Show that the sphere S2 does not admit the structure of a Lie group.

Hint: You may use the hairy ball theorem without proof: S2 does not admit a nowhere vanishing
vector field.

The following exercise treats a version of the Campbell-Hausdorff-Baker formula.

Exercise 5 (Multiplication and exp). Let G be a Lie group with Lie algebra g. Show that for all
X,Y ∈ g and small enough t ∈ R

exp(tX) exp(tY ) = exp(t(X + Y ) +O(t2))

where O(t2) is a differentiable g-valued function such that O(t2)
t2 is bounded as t → 0.

Exercise 6 (Exponential maps). This exercise illustrates the difference between the Riemannian
exponential exp and the Lie group exponential Exp. Let M be a Riemannian manifold and p ∈ M .
Then for every v ∈ TpM there is a unique geodesic γv : (−ε, ε) → M with γv(0) = p and γ′

v(0) = v.
Here, a geodesic is a path that locally minimizes distance and is parametrized with constant speed.
The Riemannian exponential is the map exp: TpM → M defined by exp(v) = γv(1).

We consider the smooth manifold M = R>0 and the tangent space TpM at p = 1 ∈ R>0 = M .
Consider the Riemannian structures g1, g2 on with g1(p), g2(p) : TpM → R, given by g1(p)(v, w) =
v · w and g2(p)(v, w) = 1/p2 · v · w. Show that they correspond to the metrics d1(x, y) = |x − y|
and d2(x, y) = | log(x/y)| on M . Calculate the Riemannian exponential map for the two structures
and notice that they don’t coincide. Which of these two Riemannian exponentials coincides with
the Lie group exponential of the matrix Lie group (R>0, ·)?

The following exercise is hard and requires some knowledge of Riemannian geometry and the adjoint
representation. A proof can be found in [AB15, Thm. 2.27]. Show that whenever a Lie group is
equipped with a Riemanninan structure that is left and right invariant under the group action, then
the Riemannian exponential coincides with the Lie group exponential.

Hint: Along the way you might want to prove: Let (G, ⟨·, ·⟩) be a Lie group with bi-invariant metric.
If X,Y, Z ∈ g, then ⟨[X,Y ], Z⟩ = −⟨[X,Z], Y ⟩. If ∇ is the Levi-Civita connection, then for X,Y ∈ g
holds ∇XY = 1

2 [X,Y ].

Exercise 7 (Small subgroups). A topological group has small subgroups if every neighborhood of
the identity contains a non-trivial subgroup.

Show that Lie groups have no small subgroup.

In fact the following is an answer to Hilbert’s 5th question:

Let G be a connected locally compact topological group. Then G is a Lie group if and only if G
has no small subgroups.
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Exercise 8. (No exotic Lie groups)

A second countable locally Euclidean topological group has at most one smooth structure making
it into a Lie group.

Hint: Use Exercise 3(b) on sheet 5.

Exercise 9 (Ideals and quotients of Lie algebras). Let g be a real Lie algebra and h ◁ g an ideal.

(1) Show that
[X + h, Y + h] := [X,Y ] + h

defines a Lie algebra structure on g/h.

(2) Show that if φ : g → h is a Lie algebra homomorphism then

g/kerφ ∼= imφ

as Lie algebras.

(3) Let h ⊆ I be ideals of g. Show that

I/h ⊴ g/h and (g/h)/(I/h) ∼= g/I.

(4) Let h and I be ideals of g. Show that h+ I and h ∩ I are ideals in g, and that

h/(h ∩ I) ∼= (h+ I)/I.

(5) Show that if g is nilpotent, then h and g/h are also nilpotent.

(6) Show that if g/h is nilpotent and h ⊆ Z(g), then g is nilpotent.
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