Solutions to Exercise Sheet 1

Exercise 1 (Product of topological groups). Let A be a set and for every $\alpha \in A$, G_{α} a topological group. Show that

$$G := \prod_{\alpha \in A} G_{\alpha}$$

with the product topology¹ is a topological group.

Solution. We first consider the multiplication $m: G \times G \to G$, $((g_{\alpha})_{\alpha}, (h_{\alpha})_{\alpha}) \mapsto (g_{\alpha}h_{\alpha})_{\alpha}$. Let $O = \prod U_{\alpha}$ be an open set of the basis of the product topology; this means U_{α} open and $U_{\alpha} = G_{\alpha}$ for all but finitely many $\alpha \in A$. Now

$$m^{-1}(O) = \{(g,h) \in G \times G \colon gh \in O\} = \{((g_{\alpha})_{\alpha}, (h_{\alpha})_{\alpha}) \in G \times G \colon g_{\alpha}h_{\alpha} \in U_{\alpha}\}$$
$$\cong \{(g_{\alpha}, h_{\alpha})_{\alpha} \in \prod_{\alpha} (G_{\alpha} \times G_{\alpha}) \colon g_{\alpha}h_{\alpha} \in U_{\alpha}\} = \prod_{\alpha} \{(g_{\alpha}, h_{\alpha}) \in G_{\alpha} \times G_{\alpha} \colon g_{\alpha}h_{\alpha} \in U_{\alpha}\}$$
$$= \prod_{\alpha} m_{\alpha}^{-1}(U_{\alpha}).$$

where we identified $G \times G \cong \prod (G_{\alpha} \times G_{\alpha})$. Since G_{α} are topological groups $m_{\alpha}^{-1}(U_{\alpha}) \subseteq G_{\alpha} \times G_{\alpha}$ open. For all but finitely many $\alpha \in A$, $U_{\alpha} = G_{\alpha}$, so $m_{\alpha}^{-1}(U_{\alpha}) = G_{\alpha} \times G_{\alpha}$, so $m^{-1}(O)$ is open in $\prod (G_{\alpha} \times G_{\alpha}) \cong G \times G$.

The inversion $i: G \times G, (g_{\alpha})_{\alpha} \mapsto (g_{\alpha}^{-1})_{\alpha}$ satisfies $i^{-1}(O) = \prod U_{\alpha}^{-1}$. Since $i_{\alpha}: G_{\alpha} \to G_{\alpha}$ is continuous, $U_{\alpha}^{-1} = i_{\alpha}^{-1}(U_{\alpha})$ is open and equal to G_{α} for all but finitely many $\alpha \in A$. Hence $i^{-1}(O)$ is open.

A general open set of G is a union $\cup O_i$ of open sets of the basis. We note that $m^{-1}(\cup O_i) = \cup m^{-1}(O_i)$ and $i^{-1}(\cup O_i) = \cup i^{-1}(O_i)$, so the preimages of any open set are open. This means that m and i are continuous, and G is a topological group.

Exercise 2 (O(p,q)). We consider the orthogonal group O(p,q) of signature $p,q \ge 1$.

- a) Show that the connected component of the group O(1,1) containing the identity is homeomorphic to \mathbb{R} .
- b) Show that for all $p, q \ge 1$, O(p, q) has a subgroup isomorphic to \mathbb{R} .

Solution. a) We recall that

$$\mathcal{O}(1,1) = \left\{ g \in \mathrm{GL}(2,\mathbb{R}) \colon {}^{\mathrm{t}}g \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} g = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \right\}.$$

¹A basis of the product topology is given by the sets $\prod U_{\alpha}$, where U_{α} open and $U_{\alpha} = G_{\alpha}$ for all but finitely many $\alpha \in A$.

Now if

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}(1,1),$$

we obtain the conditions $a^2 - c^2 = 1$, $d^2 - b^2 = 1$ and ab = cd. Rephrasing a = cd/b and b = cd/a we obtain

$$\left(\frac{cd}{b}\right)^2 - c^2 = 1 \quad \text{and} \quad d^2 - \left(\frac{cd}{a}\right)^2 = 1$$
$$\iff c^2 d^2 - c^2 b^2 = b^2 \quad \text{and} \quad a^2 d^2 - c^2 d^2 = a^2$$
$$\iff 1 = d^2 - b^2 = b^2/c^2 \quad \text{and} \quad 1 = a^2 - c^2 = a^2/d^2$$
$$\iff b^2 = c^2 \quad \text{and} \quad a^2 = d^2,$$

so $a = \pm d$ and $b = \pm c$. By ab = cd, both signs have to be the same. We obtain that

$$\mathcal{O}(1,1) = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \mathrm{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\} \cup \left\{ \begin{pmatrix} a & b \\ -b & -a \end{pmatrix} \in \mathrm{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\}.$$

Every a, b with $a^2 - b^2 = 1$ can be written as $a = \pm \cosh(\varphi)$ and $b = \sinh(\varphi)$ for some unique $\varphi \in \mathbb{R}$. Thus

$$O(1,1) = \left\{ \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi) \\ \sinh(\varphi) & \cosh(\varphi) \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} -\cosh(\varphi) & \sinh(\varphi) \\ \sinh(\varphi) & -\cosh(\varphi) \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi) \\ -\sinh(\varphi) & -\cosh(\varphi) \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} -\cosh(\varphi) & \sinh(\varphi) \\ -\sinh(\varphi) & \cosh(\varphi) \end{pmatrix} \right\}.$$

The description of O(1,1) above shows that there are four parts of O(1,1), all of which are pathconnected, (parametrize the paths using φ). We claim that the four parts are distinct connected components:

Note that the determinant on the first two parts is $a^2 - b^2 = 1$ and the determinant on the last two parts is $-a^2 + b^2 = -1$. Since the determinant is a continuous map $O(1, 1) \to \mathbb{R}$ this shows that those parts are in different components. To distinguish more, we consider the continuous map $g = (g_{ij})_{ij} \mapsto g_1 1$. On the first and third part this function is at least 1, while on the second and third component, this function is at most -1. These two observations imply that all four parts are contained in different connected components. Since they are path-connected, they are exactly the four connected components of O(1, 1).

We note that the first component contains Id when $\varphi = 0$, so the connected component of the identity is

$$O(1,1)^{\circ} = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\} = \left\{ \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi) \\ \sinh(\varphi) & \cosh(\varphi) \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon \varphi \in \mathbb{R} \right\}$$

and the last description shows that it is homeomorphic to \mathbb{R} .

b) Equipped with the ideas from part a), we consider the subgroup

$$G = \{g(\varphi) \colon \varphi \in \mathbb{R}\} \quad \text{for} \quad g(\varphi) = \begin{pmatrix} \cosh(\varphi) & 0 & \cdots & \sinh(\varphi) & 0 & \cdots \\ 0 & 1 & \ddots & 0 & 0 & \ddots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots \\ \hline \sinh(\varphi) & 0 & \cdots & \cosh(\varphi) & 0 & \cdots \\ 0 & 0 & \ddots & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots \end{pmatrix}$$

Explicit calculations show that $g(\varphi) \in O(p,q)$.

Exercise 3 (Compact-Open Topology). Let X, Y, Z be a topological space, and denote by $C(Y, X) := \{f: Y \to X \text{ continuous}\}$ the set of continuous maps from Y to X. The set C(Y, X) can be endowed with the *compact-open topology*, that is generated by the subbasic sets

$$S(K,U) := \{ f \in C(Y,X) \mid f(K) \subseteq U \},\$$

where $K \subseteq Y$ is compact and $U \subseteq X$ is open.

Prove the following useful facts about the compact-open topology.

- If Y is locally compact², then:
 - a) The evaluation map $e: C(Y, X) \times Y \to X, e(f, y) := f(y)$, is continuous.
 - b) A map $f: Y \times Z \to X$ is continuous if and only if the map

$$\hat{f}: Z \to C(Y, X), \quad \hat{f}(z)(y) = f(y, z),$$

is continuous.

- **Solution.** a) For $(f, y) \in C(Y, X) \times Y$ let $U \subset X$ be an open neighborhood of f(y). Since Y is locally compact, continuity of f implies there is a compact neighborhood $K \subset Y$ of y such that $f(K) \subset U$. Then $S(K, U) \times K$ is a neighborhood of (f, y) in $C(Y, X) \times Y$ taken to U by e, so e is continuous at (f, y).
 - b) Suppose $f: Y \times Z \to X$ is continuous. To show continuity of \hat{f} it suffices to show that for a subbasic set $S(K,U) \subset C(Y,X)$, the set $\hat{f}^{-1}(S(K,U)) = \{z \in Z \mid f(K,z) \subset U\}$ is open in Z. Let $z \in \hat{f}^{-1}(S(K,U))$. Since $f^{-1}(U)$ is an open neighborhood of the compact set $K \times \{z\}$, there exist open sets $V \subset Y$ and $W \subset Z$ whose product $V \times W$ satisfies $K \times \{z\} \subset V \times W \subset f^{-1}(U)$. Indeed, $f^{-1}(U) = \bigcup_{i \in I} V_i \times W_i$ and we can choose a finite family $I' \subset I$ with $K \times \{z\} \subset \bigcup_{i \in I'} V_i \times W_i$. Then set $W \coloneqq \bigcap_{z \in W_i} W_i$ and $V \coloneqq \bigcup_{z \in W_i} V_i$.

²A subset $C \subseteq Y$ that contains an open subset $U \subseteq Y$ with $y \in U \subseteq C \subseteq Y$ is called a *neighborhood of* $y \in Y$. Then Y is called *locally compact* if for every $y \in Y$ there is a set \mathcal{D} of compact neighborhoods of y such that every neighborhood of y contains an element of \mathcal{D} as a subset.

So W is a neighborhood of z in $\hat{f}^{-1}(S(K,U))$. (The hypothesis that Y is locally compact is not needed here.)

For the converse of b) note that f is the composition $Y \times Z \to Y \times C(Y, X) \to X$ of $\mathrm{Id} \times \hat{f}$ and the evaluation map, so part a) gives the result.

Exercise 4 (General Linear Group $GL(n, \mathbb{R})$). The general linear group

$$\operatorname{GL}(n,\mathbb{R}) \coloneqq \{A \in \mathbb{R}^{n \times n} | \det A \neq 0\} \subseteq \mathbb{R}^{n \times n}$$

is naturally endowed with the subspace topology of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. However, it can also be seen as a subset of the space of homeomorphisms of \mathbb{R}^n via the injection

$$\begin{split} j\colon \operatorname{GL}(n,\mathbb{R}) &\to \operatorname{Homeo}(\mathbb{R}^n),\\ A &\mapsto (x \mapsto Ax). \end{split}$$

a) Show that $j(\operatorname{GL}(n,\mathbb{R})) \subset \operatorname{Homeo}(\mathbb{R}^n)$ is a closed subset, where $\operatorname{Homeo}(\mathbb{R}^n) \subset C(\mathbb{R}^n,\mathbb{R}^n)$ is endowed with the compact-open topology.

Solution. Note that

$$j(\operatorname{GL}(n,\mathbb{R})) = \{f \in \operatorname{Homeo}(\mathbb{R}^n) : f(\lambda x + y) = \lambda f(x) + f(y) \text{ for all } \lambda \in \mathbb{R}, x, y \in \mathbb{R}^n\}$$

Since evaluation is continuous also the maps

$$F_{\lambda,x,y}$$
: Homeo $(\mathbb{R}^n) \to \mathbb{R}^n$
 $f \mapsto f(\lambda x + y) - \lambda f(x) - f(y)$

are continuous for all $\lambda \in \mathbb{R}, x, y \in \mathbb{R}^n$.

Thus,

$$j(\operatorname{GL}(n,\mathbb{R})) = \bigcap_{\lambda \in \mathbb{R}, x, y \in X} F_{\lambda,x,y}^{-1}(0) \subset \operatorname{Homeo}(\mathbb{R}^n)$$

is closed as the intersection of closed sets.

b) If we identify $\operatorname{GL}(n, \mathbb{R})$ with its image $j(\operatorname{GL}(n, \mathbb{R})) \subset \operatorname{Homeo}(\mathbb{R}^n)$ we can endow it with the induced subspace topology. Show that this topology coincides with the usual topology coming from the inclusion $\operatorname{GL}(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$. <u>Hint:</u> Exercise 3 can be useful here.

Solution. Consider the inclusions

$$i: \operatorname{GL}(n, \mathbb{R}) \to \mathbb{R}^{n \times n},$$
$$A \mapsto \begin{pmatrix} | & | \\ A\mathbf{e}_1 & \cdots & A\mathbf{e}_n \\ | & | \end{pmatrix},$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_n$ denotes the standard basis of $\mathbb{R}^{n \times n}$.

Further, consider the maps

$$\varphi : \mathbb{R}^{n \times n} \to C(\mathbb{R}^n, \mathbb{R}^n),$$

$$\begin{pmatrix} | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | \end{pmatrix} \mapsto (\mathbf{x} \mapsto x_1 \cdot \mathbf{v}_1 + \cdots + x_n \cdot \mathbf{v}_n),$$

$$\psi: C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^{n \times n},$$

$$f \mapsto \begin{pmatrix} | & | \\ f(\mathbf{e}_1) & \cdots & f(\mathbf{e}_n) \\ | & | \end{pmatrix}.$$

It is easy to verify that these form the following commutative diagram.

Since both topologies under consideration on $\operatorname{GL}(n,\mathbb{R})$ come from pulling back the topologies of $\mathbb{R}^{n\times n}$ resp. $C(\mathbb{R}^n,\mathbb{R}^n)$ via *i* resp. *j* they will coincide if we can show that the maps φ and ψ are continuous³.

The map ψ is continuous because it is the product of the evaluation maps

$$\operatorname{ev}_{\mathbf{e}_i}: C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^n, \operatorname{ev}_{\mathbf{e}_i}(f) = f(\mathbf{e}_i)$$

 $(i=1,\ldots,n).$

Further, observe that the map

$$\operatorname{ev} \circ (\varphi \times \operatorname{Id}) : \mathbb{R}^{n \times n} \times \mathbb{R}^n \to \mathbb{R}^n, (A, x) \mapsto Ax$$

is continuous. This implies that φ is continuous.

Exercise 5 (Isometry Group Iso(X)). Let (X, d) be a *compact* metric space. Recall that the isometry group of X is defined as

$$\operatorname{Iso}(X) = \{ f \in \operatorname{Homeo}(X) : d(f(x), f(y)) = d(x, y) \quad \text{ for all } x, y \in X \}.$$

Show that $Iso(X) \subset Homeo(X)$ is compact with respect to the compact-open topology.

<u>Hint:</u> Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem, see Appendix A.2 in Prof. Alessandra Iozzi's book.

Solution. The compact-open topology on Homeo(X) coincides with the topology induced by the metric of uniform convergence

$$d_{\infty}(f,g) = \sup\{d(f(x),g(x)) : x \in X\}.$$

$$j = \varphi \circ i : (\operatorname{GL}(n, \mathbb{R}), \tau_i) \to C(\mathbb{R}^n, \mathbb{R}^n)$$

and

³Let τ_i, τ_j denote the topologies, so that τ_i is the smallest topology on $GL(n, \mathbb{R})$ such that *i* is continuous and τ_j is the smallest such that *j* is continuous. If φ is continuous, then

is continuous, thus $\tau_j \subset \tau_i$. Analogously, if ψ is continuous, then $\tau_i \subset \tau_j$ and so the two topologies coincide.

Note that by Arzelà–Ascoli (Theorem A.1 in the lecture notes) a family $\mathcal{F} \subseteq C(X, X)$ of continuous maps is compact if and only if \mathcal{F} is equicontinuous, and \mathcal{F} is closed.

Equicontinuity of $\mathcal{F} \coloneqq \operatorname{Iso}(X)$ is clear, because we are dealing with isometries. We check that $\operatorname{Iso}(X)$ is closed.

Let $f \in C(X, X)$ and let $(f_n)_{n \in \mathbb{N}} \subset \operatorname{Iso}(X)$ be a sequence converging to it. Let $x, y \in X$ then

$$\begin{aligned} 0 &\leq |d(f(x), f(y)) - d(x, y)| \\ &= |d(f(x), f(y)) - d(f_n(x), f_n(y))| \\ &\leq |d(f(x), f(y)) - d(f_n(x), f(y))| + |d(f_n(x), f(y)) - d(f_n(x), f_n(y))| \\ &\leq d(f(x), f_n(x)) + d(f(y), f_n(y)) \to 0 \quad (n \to \infty). \end{aligned}$$

Hence, f is an isometry as wished for. Because f was arbitrary this shows that $Iso(X) \subseteq C(X, X)$ is closed.

Exercise 6 (Homeo(\mathbb{S}^1) is not locally compact.). Let $\mathbb{S}^1 \subseteq \mathbb{C} \setminus \{0\}$ denote the circle. Show that Homeo(\mathbb{S}^1) with the compact-open topology is not locally compact.

Solution. We will prove a more general fact, namely that Homeo(M) is not locally compact for any compact manifold M of positive dimension. Note that we can think of M as a compact metric space (M, d) by Urysohn's metrization theorem. In the case when M is a smooth manifold this is even easier to see by endowing it with a Riemannian metric. This puts us now in the favorable position of being able to identify the compact-open topology on Homeo(X) with the topology of uniform convergence.

We denote by

$$d_{\infty}(f,g) := \sup\{d(f(x),g(x)) : x \in M\}$$

the metric of uniform convergence on $\operatorname{Homeo}(M)$. Further denote by $B_f^{\infty}(r)$ the ball of radius r > 0about a homeomorphism $f \in \operatorname{Homeo}(M)$. In order to show that $\operatorname{Homeo}(M)$ is not locally compact we will construct in every $\varepsilon > 0$ ball about the identity $B_{\operatorname{Id}}^{\infty}(\varepsilon)$ a sequence of homeomorphisms $(f_k)_{k\in\mathbb{N}}$ with no convergent subsequence.

Let $\varepsilon > 0$ and denote $B = B^{\infty}_{\mathrm{Id}}(\varepsilon)$. Further, let $x_0 \in M$ and choose a coordinate chart $\varphi : U \subset B_{\varepsilon/2}(x_0) \to \mathbb{R}^n$ centered at x_0 (i.e. $\varphi(x_0) = 0$) contained in the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ about x_0 in M. Consider the homeomorphisms

$$\psi_k : \overline{B_1}(0) \to \overline{B_1}(0), \quad x \mapsto \|x\|^k x$$

on the closed unit ball $\overline{B_1}(0)$ in \mathbb{R}^n which fix $0 \in \mathbb{R}^n$ and the boundary *n*-sphere pointwise. Note that the sequence $(\psi_k)_{k \in \mathbb{N}}$ converges pointwise to

$$\psi_{\infty} = \begin{cases} x, & \text{if } x \in \partial B_1(0), \\ 0, & \text{if } x \in B_1(0). \end{cases}$$

Now, define

$$f_k(x) := \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ \varphi^{-1}(\psi_k(\varphi(x))), & \text{if } x \in \varphi^{-1}(B_1(0)). \end{cases}$$

It is easy to see that the maps $f_k : M \to M$ are indeed homeomorphisms: $f_k|_{\varphi^{-1}(\overline{B_1}(0))^c} = \mathrm{Id} : \varphi^{-1}(\overline{B_1}(0))^c \to \varphi^{-1}(\overline{B_1}(0))^c$ is a homeomorphism, $\varphi^{-1} \circ \psi_k \circ \varphi : \varphi^{-1}(\overline{B_1}(0)) \to \varphi^{-1}(\overline{B_1}(0))$ is a homeomorphism and both coincide on $\varphi^{-1}(\partial B_1(0))$.

Further, the homeomorphisms f_k map the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ to itself and fix x_0 . Therefore,

$$d(f_k(x), x) \le d(f_k(x), \underbrace{f_k(x_0)}_{=x_0}) + d(x_0, x) < \varepsilon,$$

for every $x \in B_{\varepsilon/2}(x_0)$, and clearly $f_k(x) = x$ for every $x \notin B_{\varepsilon/2}(x_0)$. Hence, the sequence $(f_k)_{k \in \mathbb{N}}$ is in $B_{\varepsilon}^{\infty}(\mathrm{Id})$.

However, the sequence $(f_k)_{k \in \mathbb{N}}$ converges pointwise to

$$f_{\infty}(x) = \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ x_0, & \text{if } x \in \varphi^{-1}(B_1(0)), \end{cases}$$

If there were a subsequence $(f_{k_l})_{l \in \mathbb{N}}$ converging to some $f \in \text{Homeo}(M)$ uniformly then this sequence would also converge pointwise to f, i.e. f needs to coincide with f_{∞} . But f_{∞} is not even continuous which contradicts our assumption of $f \in \text{Homeo}(M)$. Therefore $(f_k)_{k \in \mathbb{N}} \subset B_{\varepsilon}^{\infty}(\text{Id})$ has no uniformly convergent subsequences.

Exercise 7 (Coverings of topological groups). Let H be a topological group, G a topological space and $p: G \to H$ a covering⁴. Assume that both H and G are path-connected and locally path-connected. Show that for every $\tilde{e} \in p^{-1}(e_H)$ there is a unique topological group structure on G such that \tilde{e} is the neutral element and p is a group homomorphism.

<u>Hint:</u> You may use the *lifting criterion*: If $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ is a covering and $f: (Y, y_0) \to (X, x_0)$ is a continuous map, where Y is path-connected and locally path-connected, then there is a unique continuous lift $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ of f, i.e. $p \circ \tilde{f} = f$, if and only if $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

Solution. We will lift the multiplication and inversion maps to G and show that they define a group structure on G.

Let $m: H \times H \to H$ and $i: H \to H$ denote the multiplication and inversion maps of H, respectively, and let e_G be an arbitrary element of the fiber $p^{-1}(e_H) \subseteq G$.

⁴A covering $p: G \to H$ is a continuous map such that for every $h \in H$ there is an open neighborhood $U_h \subseteq H$ and a discrete space D_h such that $p^{-1}(x) = \prod_{d \in D_h} V_d$ and for every $d \in D_h$, $p|_{V_d}: V_d \to U_h$ is a homeomorphism.

We note that $m \circ (p \times p) : G \times G \to H \times H$ is a continuous map and if we want to lift it to \tilde{m} , it needs to satisfy $(m \circ (p \times p))_{\star}(\pi_1(G \times G, (e_G, e_G))) \subseteq p_{\star}(\pi_1(G, e_G))$.

Lemma: $m_{\star}([\gamma], [\alpha]) = [\gamma] \circ [\alpha]$ for all loops γ, α in H based at e_H , where \circ is the group operation in in $\pi_1(H, e_H)$.

Proof: If 1: $t \mapsto e_H$ denotes the trivial loop in H, we have by definition that $m_{\star}([\gamma], [1])$ is the equivalence class of the loop $[0, 1] \to H, t \mapsto \gamma(t) \cdot e_H = \gamma(t)$, so $m_{\star}([\gamma], [1]) = [\gamma]$ and similarly $m_{\star}([1], [\alpha]) = [\alpha]$. Now since m_{\star} is a group homomorphism

$$m_{\star}([\gamma], [\alpha]) = m_{\star}(([\gamma], [1])([1], [\alpha])) = m_{\star}([\gamma], [1]) \circ m_{\star}([1], [\alpha]) = [\gamma] \circ [\alpha].$$

Now given any $[\gamma], [\alpha] \in \pi_1(G)$, we have $(m \circ (p \times p))_{\star}([\gamma], [\alpha]) = m_{\star}(p_{\star}([\gamma]), p_{\star}([\alpha])) = p_{\star}[\gamma] \circ p_{\star}[\alpha]$ and this is contained in the image of p_{\star} since

$$p_{\star}([\gamma \circ \alpha]) = p_{\star}([\gamma] \circ [\alpha]).$$

The map $m \circ (p \times p) : G \times G \to H$ thus has a unique continuous lift $\tilde{m} : G \times G \to G$ satisfying $\tilde{m}(e_G, e_G) = e_G$ and $p \circ \tilde{m} = m \circ (p \times p)$.

By similar reasoning, $i \circ p : G \to H$ has a smooth lift $\tilde{i} : G \to G$ satisfying $\tilde{i}(e_G) = e_G$ and $p \circ \tilde{i} = i \circ p$:

We define multiplication and inversion in G by $xy = \tilde{m}(x,y)$ and $x^{-1} = \tilde{i}(x)$. By the above commutative diagrams we obtain

$$p(xy) = p(x)p(y),$$
 $p(x^{-1}) = p(x)^{-1}.$

It remains to show that G is a group with these operations, for then it is a topological group because \tilde{m} and \tilde{i} are continuous and the above relations imply that p is a homomorphism.

First we show that e_G is an identity for multiplication in G. Consider the map $f: G \to G$ defined by $f(x) = e_G x$. Then

$$p(f(x)) = p(e_G)p(x) = e_H p(x) = p(x),$$

so f is a lift of $p: G \to H$. The identity map Id_G is another lift of p, and it agrees with f at a point because $f(e_G) = \tilde{m}(e_G, e_G) = e_G$, so the unique lifting property of covering maps implies that $f = \mathrm{Id}_G$, or equivalently, $e_G x = x$ for all $x \in G$. The same argument shows that $xe_G = x$.

Next, to show that multiplication in G is associative, consider the two maps $\alpha_L, \alpha_R : G \times G \times G \to G$ defined by

$$\alpha_L(x, y, z) = (xy)z, \quad \alpha_R(x, y, z) = x(yz).$$

Then

$$p(\alpha_L(x, y, z)) = (p(x)p(y))p(z) = p(x)(p(y)p(z)) = p(\alpha_R(x, y, z))$$

so α_L and α_R are both lifts of the same map $\alpha(x, y, z) = p(x)p(y)p(z)$. Because α_L and α_R agree at (e_G, e_G, e_G) , they are equal. A similar argument shows that $x^{-1}x = xx^{-1} = e_G$, so G is a group.

The uniqueness follows from the uniqueness of the lifting property.