Dr. D. Semola Introduction to Lie Groups FS 2024

Solutions to Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and
1 G x X — X a continuous transitive group action, i.e. for any two =,y € X there is g € G such

that p(g,z) =g -z =y.

a) Show that if G is compact then X is compact.
b) Show that if G is connected then X is connected.
Solution. Let zy € X and consider the map
p:G— X,
g = g, o).

Because p is a continuous action the map ¢ is continuous too. Further the action p is transitive,
i.e. for every y € X there is a g € G such that u(g,zo) = y. In other words, ¢ is surjective.

Part a) follows from the fact that X = ¢(G) is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected com-
ponents and again that ¢(G) = X.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of
the measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let
X be locally compact second countable Hausdorff space. Then every Borel measure on X that is
finite on compact sets is regular.

The measures we consider in this exercise are defined on subspaces X of R* for some k € N, which
are equipped with the subspace topology. In particular, if K C X is compact, then it is compact
also in R¥.

Moreover, these measures (with the exception of part d)) are of the form f(x)dL(x), where dL
denotes the Lebesgue measure and f is some continuous function on X. Thus they are finite on
compact sets and by the above theorem they are regular.

a) Let us consider the three-dimensional Heisenberg group H = R x,,R?, where n : R — Aut(R?)

is defined by
v\ _ Y
(%) = (L)



for all x,y, z € R. Thus the group operation is given by

(1,91, 21) * (22,92, 22) = (x1 + T2, 91 + Y2, 21 + 22 + T1Y2)

and it is easy to see that it can be identified with the matrix group

H= tx,y,z € R

S O =
O = 8
— < W

Verify that the Lebesgue measure is the Haar measure of R x,, R? and that the group is
unimodular.

Solution. Denote by p the measure on H induced by the Lebesgue measure on R3. In order
to show that p is unimodular we need to see that

for every f € C.(H), h € H.
Let hy = (21,y1,21) € H and f € C.(H). We compute

/(/\(hfl)f)(l‘% Y2, 22)dr2dyadzy
= /f(% + T2, Y1 + Y2, 21 + 22 + T1Yy2)dxodyadze
Fubini /f(xl + 22, y1 + Y2, 22 + (21 + 21y2) )d2odxadys

transl. inv.

= /f(% + o, Y1 + Y2, 22)dzodxadys

F.

&

o /f(xhyl + Y2, 22)dxodyadzo

F.

&

o /f(xl,y2,22)d$2dy2dz2-

This shows left-invariance.



/(P(hl)f)(fz,y% 29)dx2dyadzo
= /f(fCQ + 21, Y2 + Y1, 22 + 21 + Toy1 ) dzadyadzs
Fubini

= /f(m + 22, y1 + 2, 22 + (21 + 21 ) )dzadxadys

transl. inv.

/f($1 + Z2,y1 + Y2, 22)dzadzradys

F.

I1&

b /f($1,y1 + Y2, 22)dxodyadzy

F.

&

- /f(x17y27z2)dx2dy2d22-

This shows right-invariance. Therefore p is a left- and right-invariant Haar measure on H

and H 1S unlm()dular.
P— : 1 .(1,“€R,(1#0 .

Show that Z—‘; db is the left Haar measure and da db is the right Haar measure. In particular,
P is not unimodular.

a b
0 a !

b) Let

Solution. Let ( ) € P and f € C.(P). We compute

we change coordinates to & = ax, j = ay which has Jacobi determinant a?

T j+abzt\dr
oG i)t
_ z y+abz~ '\  _dT
SfoG ) s

T gy \dz _



This shows left-invariance for the measure % dy as claimed.

We will now see that da db is right-invariant:

/(p(<g ab1>)f) <g ;’1) dzdy
[((5 ) (5 L))
= [ (( e Yy =

we change coordinates to Z = ax,y = a~'y which has Jacobi determinant 1

..:/f((ﬁ ba_;x1+y>)dxdy
e

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.

¢) Let G := GL,(R) C R"* denote the group of invertible matrices over R. Let A,z denote the
Lebesgue measure on R"". Prove that

dm(x) := |detz|™" dA,2(z)
defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution. As GL,(R) = det™"(R\ {0}) is open in R™, Ap2 ‘GLH(R)
to non-empty open and finite measure to compact subsets of GL,(R) (if K C GL,(R) is
compact in GLy,(R) and ¢ an open cover of K in R, then U NGL, (R) := {UNGL,(R); U €
U} is an open cover of K in GL,(R), thus it admits a finite subcover and hence so does U).
As det is continuous and does not vanish on GL,(R), the above also holds for dm(g) :=
|detg| ™" dAn2(g).

It remains to show that m is invariant. To this end we note that for ¢ € GL,(R), if g =
(915---,9n) and h € GL,(R), then

assigns non-zero measure

hg = (hg1,...,hg2) (g € Mat,(R)),

so that the left-action of h on GL,(R) can be viewed as a restriction of a diagonal matrix
diag(h,...,h) € R xn’ acting on a subset of R™. This means that for F : GL,(R) —
GL,(R),g — F(g) := hg it holds

detDF(g) = (deth)™.



Let f € Cc(GL,(R)), then
/ f(hg) |detg|™" dX,2(g) = / f(hg) |dethg| ™" [deth|" dX,z(g)
GLn (R) GL,, (R)
(p(2) = fz)|detx| ™) = ¢(F(g)) |det DF (g)[" dAn2(g)

(change of variables) =

- / S () [dety| ™ drye (y).
GL,(R)

This proves that m is a left Haar measure on GL,(R). The measure is also right-invariant,
because the map

g1h
g —
gnh
does also have Jacobian |deth|” (for example because gh = (h'g")" and the Jacobian of

transposition — being an idempotent map — is equal to 1). Thus GL,,(R) is unimodular.

Let G = SL,,(R) denote the group of matrices of determinant 1 in R™*™. For a Borel subset
B C SL,,(R) define
m(B) := A2 ({tg; g € B,t € [0,1]}).

Show that m is a well-defined bi-invariant Haar measure on SL, (R).

Solution. To check well-definedness we have to check that for any Borel subset B C SL,,(R)
the cone
C(B)={tb:be B,te[0,1]}

is a Borel subset of R™”. To this end we note first that
C(B) =C'(B) U {0},

where
C'(B)={tb:be B,t € (0,1]}.

It clearly suffices to show that C’'(B) is Borel. To this end let
GL; ' (R) = {g € GL,(R); |detg| = 1},

Note that GLE!(R) is homeomorphic to a disjoint union of two copies of SL, (R), in particular
B is Borel in GLE'(R). (As groups GLE'(R) = SL,(R) x Cy , where C is the group with
two elements.) Define

1

L,
V/|detg]

¥ : GL,(R) = GLEY(R), g+~



This is a Borel map and therefore
C'(B) = v~Y(B)ndet(0,1]
is measurable.

C Let t € (0,1], and b € B. Then x = tb satisfies det(z) = t"det(b) = t™ € (0,1] and
U(z) = V(th) = <& =b € B. Thus th € U~ (B) Ndet (0, 1].

Vir
D Let x € ¥~1(B) with det(x) € (0,1] and let b € B be such that ¥(z) = \/Ijﬁ = b.

Then z = {/|det z|b = tb with t = {/|det x| € (0, 1].

Thus we have A,2(C’'(B)) is well-defined and we only have to check that m(B) = \,,2(C'(B))
defines a measure which is finite on compact sets. But this follows directly from the fact that
B — C'(B) preserves intersections, unions, disjoint unions and compact sets.

The final claim now follows immediately from the argument in part ¢), which realizes the

action of an element g € SL,,(R) on R™ as a diagonal action of n copies of g, together with
the fact that ®,\,2 = |det®| A2 for linear ®, detg = 1, C(¢B) = ¢gC(B) and C(Bg) = C(B)g
for all g € SL,,(R) and B C SL,,(R) Borel.

Let G denote the ax + b group defined as

G:{(a I{);aERX,bER}

Note that every element in G can be written in a unique fashion as a product of the form:

a b\ [« 1 B
1 o 1 1
where o« € R* and 8 € R, which yields a coordinate system R* x R +» G. Prove that
1
dm(a, 8) = — dadp
|al
defines a left Haar measure on G. Calculate Ag(q, ) for « € R* and 8 € R.

Solution. We use the coordinate system ¢ : Aff{(R) > (a,b) — (a,a”*b) € RX x R. On
R* x R we define the measure dv(a, f) := Wl\ dadf and we claim that (¢~ 1),v is a left-Haar

measure on Aff; (R).
For g € G we denote as in the lecture A(g), p(g) the left, resp. right, action of g on C.(G).

Let f € Cc(Aﬁl(R)) and let g = <x 3{) € Aff1(R). Then a computation shows

0
g7 u) = (5 YY) = o+ (e ) )
and also
o (e, B)g = (‘T(? w aﬂ) = Maz, 2y +27'B). (2)



We check left-invariance:

/f(g-w‘l(a,B)Cw) o
« Uk a

(
o[ (( [ Lol bt o)) ),
(.

-1
dB left-invariant —» = / fmp(xa,ﬁ)dﬁ) da
R

R o]

-1
change of variables ¢(z,w) = (z7'2,w) = = / W
RX

- [ ([ Fetan)
def /R X /R oo (2 w)dv(z,w) Y (o7 W)(f)

The modular function is determined by Ag(g9)(0:*v)(f) = (vx1v)(p(9)f)-
So for f € C.(G),g = (95 %) we compute

|x_1|dw> dz

(') (p(g)f) =v (plg)f o)

1
d;f/w/]R p(g)f)T;? (@5) 1540
-
def /RX/Rf(so l((j,ﬁ)g)dﬁda
<:)/RX/Rfw‘l(ax,|3;|‘1y+x‘15)dﬁda
dB left-invariant — = /R X /R !/ o“’_l(zr’x_lmdﬁda
change of variables 7(z,w) = (z7 'z, zw) — /RX/R%d dz
:|x[RXAdedz
al () (f)

Therefore AA{-&(R)((S Z{)) = |x|.

Exercise 3 (Aut(R",+) = GL(n,R)). For a topological group G, we denote by Aut(G) the group
of bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact
Hausdorff group G = (R", +) where n € Ny.



a)

Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as
well, is given by GL,(R).

Solution. Let ¢ € Aut(R™), then ¢ is in particular additive and thus ¢(kv) = ke(v) for all
veR" forall k€ Z. Let m € Z, n € Nand ¢ = > € Q, then

np(qu) = p(ngv) = p(mv) = mp(v) = »(q)r(v) = qp(v)

and ¢ is Q-linear. R-linearity follows from continuity of ¢ and thus ¢ € Endg(R™). As ¢ is
invertible, any choice of basis realizes ¢ as an element in GL, (R). It is clear that for such a
choice of a basis, any g € GL,,(R) defines an element in Aut(R"™) and that the correspondence
is 1-1 and obeys the various group structures (on Aut(G) and GL,(R)).

Show that mod : Aut(G) — Rsg is given by a — |deta|.

Remark. By the definition given in the lecture mod(«) is the unique positive real number
such that m(« - f) = mod(a)m(f) for all f € C.(G), m left-Haar measure on G.
This definitions may differ by an inverse from other definitions in the literature.

Solution. The n-dimensional Lebesgue measure \,, on R™ clearly is a Haar measure for R":
it is translation invariant and
(Vmr)"
A (Br(v)) = =———— € (0,00 r>0,veR"),
(B) = g gy € 0:0) ( )
showing that it is positive on open and finite on compact subsets of R”. Let f € C.(R"),
g € GL,(R). We check that A,(g7" - f) = |det g| " X\, (f):

1
Mg )= flgv)din(v) = =—— | f(gv)|detg| d\,(v
@) = [ v ira) = o [ flov) ldetg] a0
change of variables — = |detg| ™" f(v)d\,(v)
Rn

= |detg] " Au(f)-

Prove that there exists a discontinuous, bijective homomorphism from the additive group
(R, +) to itself.

Solution. Using Zorn’s lemma, construct a Q-basis of R containing 1. Denote this basis by
{z;;1 € I} for any infinite index set I containing 0 such that o = 1 (I is infinite as otherwise
R would be algebraic over Q). Fix i,5 € I\ {0} such that i # j and define a linear map
¢ : R — R by Q-linear extension of

Z; if k= i,
Vkel:p(xy)=qx ifk=j,
xrp else.

Then ¢ is a homomorphism by definition and is the identity on Q. Since every real number is
the limit of a Q-Cauchy sequence?, let (¢, )nen € QY Cauchy such that lim,, . ¢, = z;, then

lim o(gn) = lim g, = x; # 25 = p(z:) = @( lim_g,).

n— oo

_ lnz]

IFor example: given z € R take g, = € Q, so that %71 <gn < TF

n



