Solutions to Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and $\mu: G \times X \rightarrow X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x)=g \cdot x=y$.
a) Show that if G is compact then X is compact.
b) Show that if G is connected then X is connected.

Solution. Let $x_{0} \in X$ and consider the map

$$
\begin{aligned}
\varphi: G & \rightarrow X, \\
g & \mapsto \mu\left(g, x_{0}\right) .
\end{aligned}
$$

Because μ is a continuous action the map φ is continuous too. Further the action μ is transitive, i.e. for every $y \in X$ there is a $g \in G$ such that $\mu\left(g, x_{0}\right)=y$. In other words, φ is surjective.

Part a) follows from the fact that $X=\varphi(G)$ is compact as the image of a compact group.
Part b) follows from the fact that continuous maps send connected components to connected components and again that $\varphi(G)=X$.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of the measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let X be locally compact second countable Hausdorff space. Then every Borel measure on X that is finite on compact sets is regular.

The measures we consider in this exercise are defined on subspaces X of \mathbb{R}^{k} for some $k \in \mathbb{N}$, which are equipped with the subspace topology. In particular, if $K \subset X$ is compact, then it is compact also in \mathbb{R}^{k}.
Moreover, these measures (with the exception of part d)) are of the form $f(x) \mathrm{d} \mathcal{L}(x)$, where $d \mathcal{L}$ denotes the Lebesgue measure and f is some continuous function on X. Thus they are finite on compact sets and by the above theorem they are regular.
a) Let us consider the three-dimensional Heisenberg group $H=\mathbb{R} \rtimes_{\eta} \mathbb{R}^{2}$, where $\eta: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathbb{R}^{2}\right)$ is defined by

$$
\eta(x)\binom{y}{z}=\binom{y}{z+x y}
$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$
\left(x_{1}, y_{1}, z_{1}\right) *\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}\right)
$$

and it is easy to see that it can be identified with the matrix group

$$
H \cong\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_{\eta} \mathbb{R}^{2}$ and that the group is unimodular.

Solution. Denote by μ the measure on H induced by the Lebesgue measure on \mathbb{R}^{3}. In order to show that μ is unimodular we need to see that

$$
\mu(\lambda(h) f)=\mu(f)=\mu(\rho(h) f)
$$

for every $f \in C_{c}(H), h \in H$.
Let $h_{1}=\left(x_{1}, y_{1}, z_{1}\right) \in H$ and $f \in C_{c}(H)$. We compute

$$
\begin{aligned}
& \int\left(\lambda\left(h_{1}^{-1}\right) f\right)\left(x_{2}, y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} \\
&= \int f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}\right) d x_{2} d y_{2} d z_{2} \\
& \text { Fubini }=f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{2}+\left(z_{1}+x_{1} y_{2}\right)\right) d z_{2} d x_{2} d y_{2} \\
& \text { transl. inv. } \int f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{2}\right) d z_{2} d x_{2} d y_{2} \\
& \text { F. } \stackrel{\& \text { t.i. }}{=} \int f\left(x_{1}, y_{1}+y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} \\
& \text { F. } \& \stackrel{\&}{=} \text { t.i. } \int f\left(x_{1}, y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} .
\end{aligned}
$$

This shows left-invariance.

$$
\begin{aligned}
& \int\left(\rho\left(h_{1}\right) f\right)\left(x_{2}, y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} \\
&= \int f\left(x_{2}+x_{1}, y_{2}+y_{1}, z_{2}+z_{1}+x_{2} y_{1}\right) d x_{2} d y_{2} d z_{2} \\
& \stackrel{\text { Fubini }}{=} \int f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{2}+\left(z_{1}+x_{2} y_{1}\right)\right) d z_{2} d x_{2} d y_{2} \\
& \stackrel{\text { transl. inv. }}{=} \int f\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{2}\right) d z_{2} d x_{2} d y_{2} \\
& \text { F. } \stackrel{\& \text { t.i. }}{=} \int f\left(x_{1}, y_{1}+y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} \\
& \text { F. } \& \stackrel{\&}{=} \text { t.i. } \int f\left(x_{1}, y_{2}, z_{2}\right) d x_{2} d y_{2} d z_{2} .
\end{aligned}
$$

This shows right-invariance. Therefore μ is a left- and right-invariant Haar measure on H and H is unimodular.
b) Let

$$
P=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): a, b \in \mathbb{R}, a \neq 0\right\}
$$

Show that $\frac{d a}{a^{2}} d b$ is the left Haar measure and $d a d b$ is the right Haar measure. In particular, P is not unimodular.

Solution. Let $\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right) \in P$ and $f \in C_{c}(P)$. We compute

$$
\begin{aligned}
& \int\left(\lambda\left(\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)^{-1}\right) f\right)\left(\begin{array}{cc}
x & y \\
0 & x^{-1}
\end{array}\right) \frac{d x}{x^{2}} d y \\
= & \int f\left(\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
x & y \\
0 & x^{-1}
\end{array}\right)\right) \frac{d x}{x^{2}} d y \\
= & \int f\left(\begin{array}{cc}
a x & a y+b x^{-1} \\
0 & a^{-1} x^{-1}
\end{array}\right) a^{2} \frac{d x}{(a x)^{2}} d y=\ldots
\end{aligned}
$$

we change coordinates to $\bar{x}=a x, \bar{y}=a y$ which has Jacobi determinant a^{2}

$$
\begin{aligned}
\ldots & =\int f\left(\begin{array}{cc}
\bar{x} & \bar{y}+a b \bar{x}^{-1} \\
0 & \bar{x}^{-1}
\end{array}\right) \frac{d \bar{x}}{\bar{x}^{2}} d \bar{y} \\
& =\int f\left(\begin{array}{cc}
\bar{x} & \bar{y}+a b \bar{x}^{-1} \\
0 & \bar{x}^{-1}
\end{array}\right) d \bar{y} \frac{d \bar{x}}{\bar{x}^{2}} \\
& =\int f\left(\begin{array}{cc}
\bar{x} & \bar{y} \\
0 & \bar{x}^{-1}
\end{array}\right) \frac{d \bar{x}}{\bar{x}^{2}} d \bar{y} .
\end{aligned}
$$

This shows left-invariance for the measure $\frac{d x}{x^{2}} d y$ as claimed.
We will now see that $d a d b$ is right-invariant:

$$
\begin{aligned}
& \int\left(\rho\left(\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\right) f\right)\left(\begin{array}{cc}
x & y \\
0 & x^{-1}
\end{array}\right) d x d y \\
= & \int f\left(\left(\begin{array}{cc}
x & y \\
0 & x^{-1}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\right) d x d y \\
= & \int f\left(\left(\begin{array}{cc}
a x & b x+a^{-1} y \\
0 & a^{-1} x^{-1}
\end{array}\right)\right) d x d y=\ldots
\end{aligned}
$$

we change coordinates to $\bar{x}=a x, \bar{y}=a^{-1} y$ which has Jacobi determinant 1

$$
\begin{gathered}
\ldots=\int f\left(\left(\begin{array}{cc}
\bar{x} & b a^{-1} \bar{x}+\bar{y} \\
0 & \bar{x}^{-1}
\end{array}\right)\right) d \bar{x} d \bar{y} \\
\mathrm{~F} \stackrel{\&}{=} \mathrm{t} . \mathrm{i} \int f\left(\left(\begin{array}{cc}
\bar{x} & \bar{y} \\
0 & \bar{x}^{-1}
\end{array}\right)\right) d \bar{x} d \bar{y}
\end{gathered}
$$

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.
c) Let $G:=\operatorname{GL}_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n^{2}}$ denote the group of invertible matrices over \mathbb{R}. Let $\lambda_{n^{2}}$ denote the Lebesgue measure on $\mathbb{R}^{n^{2}}$. Prove that

$$
\mathrm{d} m(x):=|\operatorname{det} x|^{-n} \mathrm{~d} \lambda_{n^{2}}(x)
$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.
Solution. As $\mathrm{GL}_{n}(\mathbb{R})=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$ is open in $\mathbb{R}^{n^{2}},\left.\lambda_{n^{2}}\right|_{\mathrm{GL}_{n}(\mathbb{R})}$ assigns non-zero measure to non-empty open and finite measure to compact subsets of $\mathrm{GL}_{n}(\mathbb{R})$ (if $K \subseteq \mathrm{GL}_{n}(\mathbb{R})$ is compact in $\mathrm{GL}_{n}(\mathbb{R})$ and \mathcal{U} an open cover of K in $\mathbb{R}^{n^{2}}$, then $\mathcal{U} \cap \mathrm{GL}_{n}(\mathbb{R}):=\left\{U \cap \mathrm{GL}_{n}(\mathbb{R}) ; U \in\right.$ $\mathcal{U}\}$ is an open cover of K in $\mathrm{GL}_{n}(\mathbb{R})$, thus it admits a finite subcover and hence so does $\left.\mathcal{U}\right)$. As det is continuous and does not vanish on $\mathrm{GL}_{n}(\mathbb{R})$, the above also holds for $d m(g):=$ $|\operatorname{det} g|^{-n} d \lambda_{n^{2}}(g)$.
It remains to show that m is invariant. To this end we note that for $g \in \mathrm{GL}_{n}(\mathbb{R})$, if $g=$ $\left(g_{1}, \ldots, g_{n}\right)$ and $h \in \mathrm{GL}_{n}(\mathbb{R})$, then

$$
h g=\left(h g_{1}, \ldots, h g_{2}\right) \quad\left(g \in \operatorname{Mat}_{n}(\mathbb{R})\right)
$$

so that the left-action of h on $\mathrm{GL}_{n}(\mathbb{R})$ can be viewed as a restriction of a diagonal matrix $\operatorname{diag}(h, \ldots, h) \in \mathbb{R}^{n^{2} \times n^{2}}$ acting on a subset of $\mathbb{R}^{n^{2}}$. This means that for $F: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow$ $\mathrm{GL}_{n}(\mathbb{R}), g \mapsto F(g):=h g$ it holds

$$
\operatorname{det} D F(g)=(\operatorname{det} h)^{n}
$$

Let $f \in C_{c}\left(\operatorname{GL}_{n}(\mathbb{R})\right)$, then

$$
\begin{aligned}
\int_{\mathrm{GL}_{n}(\mathbb{R})} f(h g)|\operatorname{det} g|^{-n} d \lambda_{n^{2}}(g) & =\int_{\mathrm{GL}_{n}(\mathbb{R})} f(h g)|\operatorname{det} h g|^{-n}|\operatorname{det} h|^{n} d \lambda_{n^{2}}(g) \\
\left(\varphi(x)=f(x)|\operatorname{det} x|^{-n}\right) & =\int_{\mathrm{GL}_{n}(\mathbb{R})} \varphi(F(g))|\operatorname{det} D F(g)|^{n} d \lambda_{n^{2}}(g) \\
(\text { change of variables }) & =\int_{F\left(\mathrm{GL}_{n}(\mathbb{R})\right)} \varphi(y) d \lambda_{n^{2}}(y) \\
& =\int_{h \cdot \mathrm{GL}_{n}(\mathbb{R})} f(y)|\operatorname{det} y|^{-n} d \lambda_{n^{2}}(y) \\
& =\int_{\mathrm{GL}_{n}(\mathbb{R})} f(y)|\operatorname{det} y|^{-n} d \lambda_{n^{2}}(y)
\end{aligned}
$$

This proves that m is a left Haar measure on $\mathrm{GL}_{n}(\mathbb{R})$. The measure is also right-invariant, because the map

$$
g \mapsto\left(\begin{array}{c}
g_{1} h \\
\vdots \\
g_{n} h
\end{array}\right)
$$

does also have Jacobian $|\operatorname{det} h|^{n}$ (for example because $g h=\left(h^{t} g^{t}\right)^{t}$ and the Jacobian of transposition - being an idempotent map - is equal to 1$)$. Thus $\mathrm{GL}_{n}(\mathbb{R})$ is unimodular.
d) Let $G=\mathrm{SL}_{n}(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq \mathrm{SL}_{n}(\mathbb{R})$ define

$$
m(B):=\lambda_{n^{2}}(\{t g ; g \in B, t \in[0,1]\})
$$

Show that m is a well-defined bi-invariant Haar measure on $\mathrm{SL}_{n}(\mathbb{R})$.
Solution. To check well-definedness we have to check that for any Borel subset $B \subseteq \mathrm{SL}_{n}(\mathbb{R})$ the cone

$$
\mathcal{C}(B)=\{t b: b \in B, t \in[0,1]\}
$$

is a Borel subset of $\mathbb{R}^{n^{2}}$. To this end we note first that

$$
\mathcal{C}(B)=\mathcal{C}^{\prime}(B) \cup\{0\}
$$

where

$$
\mathcal{C}^{\prime}(B)=\{t b: b \in B, t \in(0,1]\}
$$

It clearly suffices to show that $\mathcal{C}^{\prime}(B)$ is Borel. To this end let

$$
\mathrm{GL}_{n}^{ \pm 1}(\mathbb{R})=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}) ;|\operatorname{det} g|=1\right\}
$$

Note that $\mathrm{GL}_{n}^{ \pm 1}(\mathbb{R})$ is homeomorphic to a disjoint union of two copies of $\mathrm{SL}_{n}(\mathbb{R})$, in particular B is Borel in $\mathrm{GL}_{n}^{ \pm 1}(\mathbb{R})$. (As groups $\mathrm{GL}_{n}^{ \pm 1}(\mathbb{R}) \cong \mathrm{SL}_{n}(\mathbb{R}) \rtimes C_{2}$, where C_{2} is the group with two elements.) Define

$$
\Psi: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathrm{GL}_{n}^{ \pm 1}(\mathbb{R}), \quad g \mapsto \frac{1}{\sqrt[n]{|\operatorname{det} g|}} g
$$

This is a Borel map and therefore

$$
\mathcal{C}^{\prime}(B)=\Psi^{-1}(B) \cap \operatorname{det}^{-1}(0,1]
$$

is measurable.
\subseteq Let $t \in(0,1]$, and $b \in B$. Then $x=t b$ satisfies $\operatorname{det}(x)=t^{n} \operatorname{det}(b)=t^{n} \in(0,1]$ and $\Psi(x)=\Psi(t b)=\frac{t b}{\sqrt[n]{t^{n}}}=b \in B$. Thus $t b \in \Psi^{-1}(B) \cap \operatorname{det}^{-1}(0,1]$.
\supseteq Let $x \in \Psi^{-1}(B)$ with $\operatorname{det}(x) \in(0,1]$ and let $b \in B$ be such that $\Psi(x)=\frac{x}{\sqrt[n]{|\operatorname{det} x|}}=b$. Then $x=\sqrt[n]{|\operatorname{det} x|} b=t b$ with $t=\sqrt[n]{|\operatorname{det} x|} \in(0,1]$.

Thus we have $\lambda_{n^{2}}\left(\mathcal{C}^{\prime}(B)\right)$ is well-defined and we only have to check that $m(B)=\lambda_{n^{2}}\left(\mathcal{C}^{\prime}(B)\right)$ defines a measure which is finite on compact sets. But this follows directly from the fact that $B \mapsto \mathcal{C}^{\prime}(B)$ preserves intersections, unions, disjoint unions and compact sets.
The final claim now follows immediately from the argument in part c), which realizes the action of an element $g \in \mathrm{SL}_{n}(\mathbb{R})$ on $\mathbb{R}^{n^{2}}$ as a diagonal action of n copies of g, together with the fact that $\Phi_{*} \lambda_{n^{2}}=|\operatorname{det} \Phi| \lambda_{n^{2}}$ for linear $\Phi, \operatorname{det} g=1, \mathcal{C}(g B)=g \mathcal{C}(B)$ and $\mathcal{C}(B g)=\mathcal{C}(B) g$ for all $g \in \mathrm{SL}_{n}(\mathbb{R})$ and $B \subseteq \mathrm{SL}_{n}(\mathbb{R})$ Borel.
e) Let G denote the $a x+b$ group defined as

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
& 1
\end{array}\right) ; a \in \mathbb{R}^{\times}, b \in \mathbb{R}\right\}
$$

Note that every element in G can be written in a unique fashion as a product of the form:

$$
\left(\begin{array}{ll}
a & b \\
& 1
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \\
& 1
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
& 1
\end{array}\right)
$$

where $\alpha \in \mathbb{R}^{\times}$and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove that

$$
\mathrm{d} m(\alpha, \beta)=\frac{1}{|\alpha|} \mathrm{d} \alpha \mathrm{~d} \beta
$$

defines a left Haar measure on G. Calculate $\Delta_{G}(\alpha, \beta)$ for $\alpha \in \mathbb{R}^{\times}$and $\beta \in \mathbb{R}$.
Solution. We use the coordinate system $\varphi: \operatorname{Aff}_{1}(\mathbb{R}) \ni(a, b) \mapsto\left(a, a^{-1} b\right) \in \mathbb{R}^{\times} \times \mathbb{R}$. On $\mathbb{R}^{\times} \times \mathbb{R}$ we define the measure $d \nu(\alpha, \beta):=\frac{1}{|\alpha|} d \alpha d \beta$ and we claim that $\left(\varphi^{-1}\right)_{*} \nu$ is a left-Haar measure on $\mathrm{Aff}_{1}(\mathbb{R})$.
For $g \in G$ we denote as in the lecture $\lambda(g), \rho(g)$ the left, resp. right, action of g on $C_{c}(G)$.
Let $f \in C_{c}\left(\operatorname{Aff}_{1}(\mathbb{R})\right)$ and let $g=\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right) \in \operatorname{Aff}_{1}(\mathbb{R})$. Then a computation shows

$$
g \varphi^{-1}(\alpha, \beta)=\left(\begin{array}{cc}
x \alpha & x \alpha \beta+y \tag{1}\\
0 & 1
\end{array}\right)=\varphi^{-1}\left(x \alpha, \beta+(x \alpha)^{-1} y\right)
$$

and also

$$
\varphi^{-1}(\alpha, \beta) g=\left(\begin{array}{cc}
x \alpha & \alpha y+\alpha \beta \tag{2}\\
0 & 1
\end{array}\right)=\varphi^{-1}\left(\alpha x, x^{-1} y+x^{-1} \beta\right) .
$$

We check left-invariance:

$$
\begin{aligned}
\lambda^{*}(g)\left(\varphi_{*}^{-1} \nu\right)(f) & \stackrel{\text { def }}{=}\left(\varphi_{*}^{-1} \nu\right)\left(\lambda\left(g^{-1}\right) f\right) \stackrel{\text { def }}{=} \nu\left(\left(\lambda\left(g^{-1}\right) f\right) \circ \varphi^{-1}\right) \\
& \stackrel{\text { def }}{=} \int_{\mathbb{R} \times} \int_{\mathbb{R}}\left(\lambda\left(g^{-1}\right) f\right) \circ \varphi^{-1}(\alpha, \beta) d \nu(\alpha, \beta) \\
& \stackrel{\text { def }}{=} \int_{\mathbb{R}^{\times}}\left(\int_{\mathbb{R}} \frac{f\left(g \cdot \varphi^{-1}(\alpha, \beta)\right.}{|\alpha|} d \beta\right) d \alpha \\
& \stackrel{(1)}{=} \int_{\mathbb{R} \times}\left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}\left(x \alpha, \beta+(x \alpha)^{-1} y\right)}{|\alpha|} d \beta\right) d \alpha \\
d \beta \text { left-invariant } \rightarrow & =\int_{\mathbb{R}^{\times}}\left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x \alpha, \beta)}{|\alpha|} d \beta\right) d \alpha \\
\text { change of variables } \psi(z, w)=\left(x^{-1} z, w\right) \rightarrow & =\int_{\mathbb{R}^{\times}}\left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{\left|x^{-1} z\right|}\left|x^{-1}\right| d w\right) d z \\
& =\int_{\mathbb{R}^{\times}}\left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{|z|} d w\right) d z \\
& \stackrel{\text { def }}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} f \circ \varphi^{-1}(z, w) d \nu(z, w) \stackrel{\text { def }}{=}\left(\varphi_{*}^{-1} \nu\right)(f)
\end{aligned}
$$

The modular function is determined by $\Delta_{G}(g)\left(\varphi_{*}^{-1} \nu\right)(f)=\left(\varphi_{*}^{-1} \nu\right)(\rho(g) f)$.
So for $f \in C_{c}(G), g=\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)$ we compute

$$
\begin{aligned}
\left(\varphi_{*}^{-1} \nu\right)(\rho(g) f) & =\nu\left(\rho(g) f \circ \varphi^{-1}\right) \\
& \stackrel{\text { def }}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{(\rho(g) f) \circ \varphi^{-1}(\alpha, \beta)}{|\alpha|} d \beta d \alpha \\
& \stackrel{\text { def }}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f\left(\varphi^{-1}(\alpha, \beta) g\right)}{|\alpha|} d \beta d \alpha \\
& \stackrel{(2)}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}\left(\alpha x, x^{-1} y+x^{-1} \beta\right)}{|\alpha|} d \beta d \alpha \\
d \beta \text { left-invariant } \rightarrow & =\int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}\left(\alpha x, x^{-1} \beta\right)}{|\alpha|} d \beta d \alpha \\
\text { change of variables } \eta(z, w)=\left(x^{-1} z, x w\right) \rightarrow & =\int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{\left|x^{-1} z\right|} d w d z \\
& =|x| \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{|z|} d w d z \\
& \stackrel{\text { def }}{=}|x|\left(\varphi_{*}^{-1} \nu\right)(f)
\end{aligned}
$$

Therefore $\Delta_{\text {Aff }_{1}(\mathbb{R})}\left(\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)\right)=|x|$.
Exercise $3\left(\operatorname{Aut}\left(\mathbb{R}^{n},+\right) \cong G L(n, \mathbb{R})\right)$. For a topological group G, we denote by $\operatorname{Aut}(G)$ the group of bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff group $G=\left(\mathbb{R}^{n},+\right)$ where $n \in \mathbb{N}_{0}$.
a) Show that $\operatorname{Aut}(G)$, i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $\mathrm{GL}_{n}(\mathbb{R})$.
Solution. Let $\varphi \in \operatorname{Aut}\left(\mathbb{R}^{n}\right)$, then φ is in particular additive and thus $\varphi(k v)=k \varphi(v)$ for all $v \in \mathbb{R}^{n}$, for all $k \in \mathbb{Z}$. Let $m \in \mathbb{Z}, n \in \mathbb{N}$ and $q=\frac{m}{n} \in \mathbb{Q}$, then

$$
n \varphi(q v)=\varphi(n q v)=\varphi(m v)=m \varphi(v) \Longrightarrow \varphi(q) \varphi(v)=q \varphi(v)
$$

and φ is \mathbb{Q}-linear. \mathbb{R}-linearity follows from continuity of φ and thus $\varphi \in \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$. As φ is invertible, any choice of basis realizes φ as an element in $\mathrm{GL}_{n}(\mathbb{R})$. It is clear that for such a choice of a basis, any $g \in \mathrm{GL}_{n}(\mathbb{R})$ defines an element in $\operatorname{Aut}\left(\mathbb{R}^{n}\right)$ and that the correspondence is 1-1 and obeys the various group structures (on $\operatorname{Aut}(G)$ and $\mathrm{GL}_{n}(\mathbb{R})$).
b) Show that $\bmod : \operatorname{Aut}(G) \rightarrow \mathbb{R}_{>0}$ is given by $\alpha \mapsto|\operatorname{det} \alpha|$.

Remark. By the definition given in the lecture $\bmod (\alpha)$ is the unique positive real number such that $m(\alpha \cdot f)=\bmod (\alpha) m(f)$ for all $f \in C_{c}(G)$, m left-Haar measure on G.
This definitions may differ by an inverse from other definitions in the literature.
Solution. The n-dimensional Lebesgue measure λ_{n} on \mathbb{R}^{n} clearly is a Haar measure for \mathbb{R}^{n} : it is translation invariant and

$$
\lambda_{n}\left(B_{r}(v)\right)=\frac{(\sqrt{\pi} r)^{n}}{\Gamma\left(\frac{n}{2}+1\right)} \in(0, \infty) \quad\left(r>0, v \in \mathbb{R}^{n}\right)
$$

showing that it is positive on open and finite on compact subsets of \mathbb{R}^{n}. Let $f \in C_{c}\left(\mathbb{R}^{n}\right)$, $g \in \mathrm{GL}_{n}(\mathbb{R})$. We check that $\lambda_{n}\left(g^{-1} \cdot f\right)=|\operatorname{det} g|^{-1} \lambda_{n}(f)$:

$$
\begin{aligned}
\lambda_{n}\left(g^{-1} f\right) & =\int_{\mathbb{R}^{n}} f(g v) d \lambda_{n}(v)=\frac{1}{|\operatorname{det} g|} \int_{\mathbb{R}^{n}} f(g v)|\operatorname{det} g| d \lambda_{n}(v) \\
\text { change of variables } \rightarrow \quad & =|\operatorname{det} g|^{-1} \int_{\mathbb{R}^{n}} f(v) d \lambda_{n}(v) \\
& =|\operatorname{det} g|^{-1} \lambda_{n}(f) .
\end{aligned}
$$

c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R},+)$ to itself.
Solution. Using Zorn's lemma, construct a \mathbb{Q}-basis of \mathbb{R} containing 1. Denote this basis by $\left\{x_{i} ; i \in I\right\}$ for any infinite index set I containing 0 such that $x_{0}=1$ (I is infinite as otherwise \mathbb{R} would be algebraic over \mathbb{Q}). Fix $i, j \in I \backslash\{0\}$ such that $i \neq j$ and define a linear map $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ by \mathbb{Q}-linear extension of

$$
\forall k \in I: \varphi\left(x_{k}\right)= \begin{cases}x_{j} & \text { if } k=i \\ x_{i} & \text { if } k=j \\ x_{k} & \text { else }\end{cases}
$$

Then φ is a homomorphism by definition and is the identity on \mathbb{Q}. Since every real number is the limit of a \mathbb{Q}-Cauchy sequence ${ }^{1}$, let $\left(q_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ Cauchy such that $\lim _{n \rightarrow \infty} q_{n}=x_{i}$, then

$$
\lim _{n \rightarrow \infty} \varphi\left(q_{n}\right)=\lim _{n \rightarrow \infty} q_{n}=x_{i} \neq x_{j}=\varphi\left(x_{i}\right)=\varphi\left(\lim _{n \rightarrow \infty} q_{n}\right)
$$

${ }^{1}$ For example: given $x \in \mathbb{R}$ take $q_{n}:=\frac{\lfloor n x\rfloor}{n} \in \mathbb{Q}$, so that $\frac{n x-1}{n} \leq q_{n} \leq \frac{n x}{n}$.

