Solutions to Exercise Sheet 3

Exercise 1. For each of the following locally compact Hausdorff groups, give an example of a lattice or prove that it does not admit a lattice.
a) The free group on 2 generators with the discrete topology.

Solution. A lattice $\Gamma<G$ in a locally compact Hausdorff group G is a discrete subgroup such that G / Γ admits a finite G-invariant regular Borel measure. For discrete groups, such as the free group on two generators $F_{2}=\langle a, b\rangle$, we can take $\Gamma=F_{2}$, with G / Γ consisting of a single point. A single point clearly admits a finite regular Borel measure, namely the one that associates to \emptyset the value 0 and to G / Γ some positive value, such as 1 .
b) $G=\mathrm{SO}(n, \mathbb{R})$.

Solution. $G=\mathrm{SO}(n, \mathbb{R})$ is compact, which can for example be seen by the fact that it is bounded and closed in the Euclidean topology. We can consider the discrete subgroup $\Gamma=\{\operatorname{Id}\}$ to obtain $G / \Gamma=\operatorname{SO}(n, \mathbb{R}) . \mathrm{SO}(n, \mathbb{R})$ admits a Haar-measure (since it is compact, the Haar measure is both a left and a right Haar measure), which is a $\mathrm{SO}(n, \mathbb{R})$-invariant regular Borel measure on itself. The measure is finite, since by definition of the Haar measure, compactly supported functions are assigned finite values by the positive linear functional $\Lambda: C_{c}(G) \rightarrow \mathbb{C}$ associated to the Haar measure. Thus $\{\operatorname{Id}\}$ is a lattice.
c) $G=\left(\mathbb{R}_{>0}, \cdot\right)$.

Solution. Let e be Euler's number. Let $\Gamma=\left\{e^{z} \in \mathbb{R}_{>0}: z \in \mathbb{R}\right\}$, then Γ is a subgroup, since $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ isomorphic to $\mathbb{Z} . \Gamma$ is discrete, as every singleton $\left\{e^{z}\right\}$ for some $z \in \mathbb{Z}$ is open in the subset topology (take an open ball with radius $e^{z}-e^{z-1}$).
The group $\mathbb{R}_{>0}$ has the Haar measure $\frac{1}{x} d x$ (and is unimodular, since abelian). By the Weyl formula (Theorem 2.68), there is a G-invariant positive regular Borel measure on the homogeneous space G / Γ if and only if the modular functions of G and Γ satisfy $\left.\Delta_{G}\right|_{\Gamma}=\Delta_{\Gamma}$. Since both G and Γ are abelian, Δ_{G} and Δ_{Γ} are both constant 1 , so the Weyl formula can be applied, which also gives us

$$
\int_{G / \Gamma} \int_{H} f(g h) \mathrm{d} \mu_{\Gamma}(h) \mathrm{d} \mu_{G / \Gamma}(g \Gamma)=\int_{G} f(g) \mathrm{d} \mu_{G}(g)
$$

for any compactly supported function $f \in C_{c}(G)$. We may pick $f=\chi_{[1, e)}$ the characteristic function of the subset $[1, e) \subseteq G=\mathbb{R}_{>0}$. The subset $[1, e)$ is called a fundamental domain for the action of Γ on G, since for every $g \in G$, there is exactly one $h_{0} \in \Gamma$ such that $g h_{0} \in[1, e)$. We thus have for every $g \in G$,

$$
\int_{H} \chi_{[1, e)}(g h) \mathrm{d} \mu_{H}(h)=\int_{H} \chi_{\left[g^{-1}, g^{-1} e\right)}(h) \mathrm{d} \mu_{H}(h)=1 \cdot \mu_{H}\left(\left\{h_{0}\right\}\right)
$$

which is a finite constant, since μ_{H} is H-invariant. Now taking $f=\frac{1}{\mu_{\Gamma}\left(\left\{h_{0}\right\}\right)} \chi_{[1, e)}$, we have

$$
\begin{aligned}
\mu_{G / \Gamma}(G / \Gamma) & =\int_{G / \Gamma} 1 \mathrm{~d} \mu_{G / \Gamma}(g \Gamma)=\int_{G / \Gamma} \frac{1}{\mu_{\Gamma}\left(\left\{h_{0}\right\}\right)} \cdot \int_{\Gamma} \chi_{[1, e)}(g h) \mathrm{d} \mu_{\Gamma}(h) \mathrm{d} \mu_{G / \Gamma}(h \Gamma) \\
& =\int_{G \Gamma} \int_{\Gamma} f(g h) \mathrm{d} \mu_{\Gamma}(h) \mathrm{d} \mu_{G / \Gamma}(h \Gamma)=\int_{G} f(g) \mathrm{d} \mu_{G}(g)<0
\end{aligned}
$$

since f is compactly supported. This means that the measure on G / Γ is finite and Γ is a lattice.
In fact, using the compatible isomorphisms $\mathbb{R}_{>0} \cong \mathbb{R}, \Gamma \cong \mathbb{Z}$, we obtain $G / \Gamma \stackrel{\text { homeo }}{=} \mathbb{R} / \mathbb{Z}=S^{1}$, which is compact, and therefore has finite measure.
d) $G=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right): a, b \in \mathbb{R}, a \neq 0\right\}$, see exercise 2 b$)$ on Sheet 2 .

Solution. By Sheet 2, Exercise 2b), we know that G is not unimodular. However, Proposition 2.70 states that if a locally compact Hausdorff group admits a lattice, then it is unimodular. We conclude that G does not admit a lattice.
e) The Heisenberg group

$$
G=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

see exercise 2a) on Sheet 2.
Solution. We consider the integer points

$$
\Gamma:=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{Z}\right\}<G
$$

and notice that Γ is a group and discrete. It remains to show that G / Γ admits a finite G invariant regular Borel measure. Even though G is not abelian, it is unimodular, see Sheet 2, exercise 2a). Since Γ is a discrete group, it is also unimodular. Hence $\left.\Delta_{G}\right|_{\Gamma}=\Delta_{\Gamma}$, and by the Weyl formula (Theorem 2.68), there is a G-invariant regular Borel measure $\mu_{G / \Gamma}$ on G / Γ. We claim that the subset

$$
R:=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in[0,1)\right\} \subseteq G
$$

is a fundamental region of the action of Γ on G. Indeed, for any $g \in G$, we can find an $h_{g} \in \Gamma$ such that $h_{g} g \in R$, by applying first

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { then } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and finally } \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

from the left. We also note that h_{g} is unique, as for every $h \in \Gamma$ and $r \in R$, if $h r \in R$, then $h=$ Id. Now the measure of the fundamental domain is (up to a positive multiplication) given by the Haar measure of R, as can be calculated using the Weyl formula

$$
\int_{G / \Gamma} \int_{H} f(g h) \mathrm{d} \mu_{\Gamma}(h) \mathrm{d} \mu_{G / \Gamma}(g \Gamma)=\int_{G} f(g) \mathrm{d} \mu_{G}(g)
$$

applied to the characteristic function $f=\chi_{R}$.
Exercise 2 (Regular Subgroups are closed). Let G be a Lie group, $H \leq G$ a subgroup that is also a regular submanifold. Prove that H is a closed subgroup of G.

Solution. Let $x \in \bar{H}$. As G is clearly first countable, we find $\left(x_{n}\right)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ such that $x=$ $\lim _{n \rightarrow \infty} x_{n}$. Let $V \subseteq W \subseteq \bar{W} \subseteq U$ open neighbourhoods of $1 \in G$ with compact closure and assume that $\psi: U \rightarrow(-1,1)^{\operatorname{dim} G}$ is a chart as in the definition of a regular submanifold. Assume furthermore that V is symmetric and $V V \subseteq W$. By assumption, there is $N \geq 1$ such that $x_{n} \in x V$ for all $n \geq N$, thus $x_{N}^{-1} x_{n} \in V^{-1} x^{-1} x V=V V \subseteq W$ for all $n \geq N$, and thus $x_{N}^{-1} x_{n} \in H \cap V V \subseteq$ $H \cap \bar{W}$. We note that $H \cap \bar{W}$ is compact by the choice of U. Indeed, $\psi(\bar{W}) \subseteq(-1,1)^{\operatorname{dim} G}$ is compact, and so is $\psi(\bar{W}) \cap\{0\}^{\operatorname{dim} G-\operatorname{dim} H} \times(-1,1)^{\operatorname{dim} H}$. But $x_{N}^{-1} x_{n}$ is convergent and has a limit y in $H \cap \bar{W}$; whence $x_{N} y=x \in H$.

Exercise 3 (The Matrix Lie Group $O(p, q))$. Let $p, q \in \mathbb{N}$ and $n=p+q$. We define the (indefinite) symmetric bilinear form $\langle\cdot, \cdot\rangle_{p, q}$ of signature (p, q) on \mathbb{R}^{n} to be

$$
\langle v, w\rangle_{p, q}:=v_{1} w_{1}+\cdots+v_{p} w_{p}-v_{p+1} w_{p+1}-\cdots-v_{p+q} w_{p+q}
$$

for all $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$. Show that

$$
O(p, q):=\left\{A \in \operatorname{GL}(n, \mathbb{R}):\langle A v, A w\rangle_{p, q}=\langle v, w\rangle_{p, q} \quad \forall v, w \in \mathbb{R}^{n}\right\}
$$

is a Lie group using the inverse function theorem/constant rank theorem. What is its dimension?
Solution. We define

$$
I_{p, q}:=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p \text {-times }}, \underbrace{-1, \ldots,-1}_{q \text {-times }})
$$

to be the diagonal matrix that has +1 in the first p entries along the diagonal and -1 in the last q entries. It is easy to see that

$$
O(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{T} I_{p, q} A=I_{p, q}\right\}
$$

Now, define

$$
f: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n \times n}, A \mapsto A^{T} I_{p, q} A
$$

such that $O(p, q)=f^{-1}\left(I_{p, q}\right)$. The map f is smooth as every entry of $f(A)$ is a polynomial in the entries of $A \in \mathrm{GL}(n, \mathbb{R})$.

We proceed by showing that f has constant rank. Let $X \in T_{A} \operatorname{GL}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n}, A \in \operatorname{GL}(n, \mathbb{R})$. We compute directly

$$
\begin{aligned}
D_{A} f(X) & =\left.\frac{d}{d t}\right|_{t=0}(A+t X)^{T} I_{p, q}(A+t X) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(A^{T} I_{p, q} A+t \cdot X^{T} I_{p, q} A+t \cdot A^{T} I_{p, q} X+t^{2} \cdot X^{T} I_{p, q} X\right) \\
& =X^{T} I_{p, q} A+A^{T} I_{p, q} X=\left(A^{T} I_{p, q} X\right)^{T}+A^{T} I_{p, q} X .
\end{aligned}
$$

We claim that the image consists of all symmetric matrices $\operatorname{Sym}_{n}(\mathbb{R}) \subset \mathbb{R}^{n \times n}$ and that $D_{A} f$: $T_{A} \mathrm{GL}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n} \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ is onto. For that consider the projection

$$
\begin{aligned}
p: \mathbb{R}^{n \times n} & \rightarrow \operatorname{Sym}_{n}(\mathbb{R}), \\
X & \mapsto \frac{1}{2}\left(X+X^{T}\right) .
\end{aligned}
$$

It is easy to check that $p \circ p=p$ and $\left.p\right|_{\operatorname{Sym}_{n}(\mathbb{R})}=\mathrm{Id}$, such that p is onto. Since,

$$
D_{A} f(X)=2 \cdot p\left(A^{T} I_{p, q} X\right)
$$

and A is invertible, $D_{A} f$ is also onto. Therefore, f has constant $\operatorname{rank} \operatorname{dim} \operatorname{Sym}_{n}(\mathbb{R})$.
It follows that $O(p, q)$ is a Lie group as multiplication $m: \operatorname{GL}(n, \mathbb{R}) \times \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ and inversion $i: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ are smooth maps and hence restrict to smooth maps on the regular submanifold $O(p, q) \subset \operatorname{GL}(n, \mathbb{R})$.

Every symmetric matrix is uniquely determined by its entries above and on the diagonal such that

$$
\operatorname{dim} \operatorname{Sym}_{n}(\mathbb{R})=n+(n-1)+\cdots+1=\frac{n(n+1)}{2}
$$

The constant rank theorem then yields

$$
\begin{aligned}
\operatorname{dim} O(p, q) & =\operatorname{dim} f^{-1}\left(I_{p, q}\right)=\operatorname{dim} \operatorname{GL}(n, \mathbb{R})-\operatorname{rank} D_{A} f \\
& =n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}
\end{aligned}
$$

Exercise 4. Let M be a smooth n-dimensional manifold and $p \in M$. Show that if (U, φ) is any chart at p with $\varphi(p)=0$, then the map

$$
\mathbb{R}^{n} \rightarrow T_{p} M, \quad v \mapsto\left(f \mapsto D_{0}\left(f \circ \varphi^{-1}\right)(v)\right)
$$

is a vector space isomorphism.
Solution. We defined the tangent space $T_{p} M$ at p as

$$
T_{p} M=\left\{X_{p}: C^{\infty}(p) \rightarrow \mathbb{R}: \text { linear forms that satisfy the Leibnitz rule }\right\}
$$

where $C^{\infty}(p)$ is the set of germs of functions at p. We first note that the map ψ defined in the exercise does take values in $T_{p} M$. For $f, g \in C^{\infty}(p)$ and $\lambda \in \mathbb{R}$, have $\psi(v)(\lambda f+g)=D_{0}\left((\lambda f+g) \circ \varphi^{-1}\right)(v)=$
$\lambda D_{0}\left(f \circ \varphi^{-1}\right)(v)+D_{0}\left(g \circ \varphi^{-1}\right)(v)=\lambda \psi(v)(f)+\psi(v)(g)$. Next, we check the Leibnitz rule, which follows from the product rule

$$
\begin{aligned}
\psi(v)(f \cdot g) & =D_{0}\left(f \cdot g \circ \varphi^{-1}\right)(v) \\
& =D_{0}\left(\left(f \circ \varphi^{-1}\right) \cdot\left(g \circ \varphi^{-1}\right)\right)(v) \\
& =D_{0}\left(f \circ \varphi^{-1}\right)(v) \cdot\left(g \circ \varphi^{-1}\right)(0)+\left(f \circ \varphi^{-1}\right)(0) \cdot D_{0}\left(g \circ \varphi^{-1}\right)(v) \\
& =\psi(v)(f) \cdot g(p)+f(p) \cdot \psi(v)(g) .
\end{aligned}
$$

We check that ψ is a linear map, let $v, w \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$. Then

$$
\begin{aligned}
\psi(\lambda v+w) & =f \mapsto D_{0}\left(f \circ \varphi^{-1}\right)(\lambda v+w) \\
& =f \mapsto \lambda D_{0}\left(f \circ \varphi^{-1}\right)(v)+D_{0}\left(f \circ \varphi^{-1}\right)(w) \\
& =\lambda \psi(v)+\psi(w)
\end{aligned}
$$

We give an explicit inverse

$$
\begin{aligned}
\theta: T_{p} M & \rightarrow \mathbb{R}^{n} \\
X_{p} & \mapsto\left(X_{p}\left(f_{1}\right), \ldots, X_{p}\left(f_{n}\right)\right)
\end{aligned}
$$

where $f_{i}: M \rightarrow \mathbb{R}$ are defined as $f_{i}=\pi_{i} \circ \varphi$ with $\pi\left(v_{1}, \ldots, v_{n}\right)=v_{i}$. We check that $\theta(\psi(v))=v$ for all $v \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\theta(\psi(v)) & =\left(D_{0}\left(f_{1} \circ \varphi^{-1}\right)(v), \ldots, D_{0}\left(f_{n} \circ \varphi^{-1}\right)(v)\right) \\
& =\left(D_{0}\left(\pi_{1}\right)(v), \ldots, D_{0}\left(\pi_{n}\right)(v)\right) \\
& =\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

For the other direction, we first describe some $f \in C^{\infty}(p)$. We consider the Taylor series at 0 of $f \circ \varphi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The statement of Taylor's theorem for multivariate functions is that for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
f \circ \varphi^{-1}(x)=c+\sum_{i} \lambda_{i} \cdot x_{i}+\sum_{i, j} \mu_{i j}(x) \cdot x_{i} \cdot x_{j}
$$

where

$$
c=f \circ \varphi^{-1}(0)=f(p) \in \mathbb{R}, \quad \lambda_{i}=\left.\frac{\partial}{\partial x_{i}}\right|_{0} f \circ \varphi^{-1} \in \mathbb{R}
$$

and for $x \in \varphi(U)$

$$
\mu_{i j}(x)=\left.\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\right|_{0} f \circ \varphi^{-1}+h_{i j}(x) \quad \text { with } \quad \lim _{x \rightarrow 0} h_{i j}(x)=0
$$

In terms of functions, we have $f \circ \varphi^{-1}=c+\sum \lambda_{i} \cdot \pi_{i}+\sum \mu_{i j} \cdot \pi_{i} \cdot \pi_{j}$ and $f=c+\sum \lambda_{i} \cdot \pi_{i} \circ \varphi+$ $\sum\left(\mu_{i j} \circ \varphi\right) \cdot\left(\pi_{i} \circ \varphi\right) \cdot\left(\pi_{j} \circ \varphi\right)$. Applying a tangent vector X_{p} to f gives

$$
\begin{aligned}
X_{p}(f) & =X_{p}(c)+\sum_{i} \lambda_{i} X_{p}\left(\pi_{i} \circ \varphi\right)+\sum_{i j} X_{p}\left(\left(\mu_{i j} \circ \varphi\right) \cdot\left(\pi_{i} \circ \varphi\right)\right) \cdot \pi_{j}(\varphi(p))+\mu_{i j}(\varphi(p)) \cdot \pi_{i}(\varphi(p)) \cdot X_{p}\left(\pi_{j} \circ \varphi\right) \\
& =X_{p}(c)+\sum_{i} \lambda_{i} X_{p}\left(\pi_{i} \circ \varphi\right)
\end{aligned}
$$

using the Leibnitz rule and the fact that $\pi_{i} \circ \varphi(p)=\pi_{i}(0)=0$. For the constant term, we can use the Leibnitz rule again to obtain $X_{p}(c)=X_{p}(1 \cdot c)=X_{p}(1) \cdot c+1 \cdot X_{p}(c)$, so $X(1) \cdot c=0$. Thus $c=0$ (hence $X_{p}(c)=0$), or $X_{p}(1)=0$ in which case also $X_{p}(c)=c X_{p}(1)=0$. Let us now calculate $\psi\left(\theta\left(X_{p}\right)\right)$

$$
\begin{aligned}
\psi\left(\theta\left(X_{p}\right)\right)(f) & =D_{0}\left(f \circ \varphi^{-1}\right)\left(\begin{array}{c}
X_{p}\left(f_{1}\right) \\
\vdots \\
X_{p}\left(f_{n}\right)
\end{array}\right) \\
& =\left.\sum_{i} \frac{\partial}{\partial x_{i}}\right|_{0}\left(f \circ \varphi^{-1}\right) \cdot X_{p}\left(f_{i}\right) \\
& =\sum_{i} \lambda_{i} X_{p}\left(\pi_{i} \circ \varphi\right)=X_{p}(f)
\end{aligned}
$$

We have shown that θ is an inverse of ψ, hence $\mathbb{R}^{n} \cong T_{p} M$.

