Dr. D. Semola Introduction to Lie Groups FS 2024

Solutions to Exercise Sheet 3

Exercise 1. For each of the following locally compact Hausdorff groups, give an example of a
lattice or prove that it does not admit a lattice.

a)

The free group on 2 generators with the discrete topology.

Solution. A lattice I' < G in a locally compact Hausdorff group G is a discrete subgroup
such that G/T" admits a finite G-invariant regular Borel measure. For discrete groups, such
as the free group on two generators F» = (a,b), we can take I' = Fy, with G/T" consisting of
a single point. A single point clearly admits a finite regular Borel measure, namely the one
that associates to @) the value 0 and to G//T" some positive value, such as 1.

G =SO(n,R).

Solution. G = SO(n,R) is compact, which can for example be seen by the fact that it
is bounded and closed in the Euclidean topology. We can consider the discrete subgroup
I' = {Id} to obtain G/T' = SO(n,R). SO(n,R) admits a Haar-measure (since it is compact,
the Haar measure is both a left and a right Haar measure), which is a SO(n,R)-invariant
regular Borel measure on itself. The measure is finite, since by definition of the Haar measure,
compactly supported functions are assigned finite values by the positive linear functional
A: C.(G) — C associated to the Haar measure. Thus {Id} is a lattice.

G = (Rso, ).

Solution. Let e be Euler’s number. Let I' = {e* € Ry: z € R}, then I is a subgroup, since
e*1e*2 = e*1172 jsomorphic to Z. T is discrete, as every singleton {e*} for some 2 € Z is open
in the subset topology (take an open ball with radius e* — e~ 1).

The group Rs¢ has the Haar measure %da: (and is unimodular, since abelian). By the Weyl
formula (Theorem 2.68), there is a G-invariant positive regular Borel measure on the homo-
geneous space G/T" if and only if the modular functions of G and T satisfy Ag|r = Ar. Since
both G and T" are abelian, Ag and Ar are both constant 1, so the Weyl formula can be
applied, which also gives us

/ / F(gh) dur(h) dpag e (gT) = / £(9) dc(g)
G/rJH G

for any compactly supported function f € C.(G). We may pick f = x[1 ) the characteristic
function of the subset [1,e) C G = Rso. The subset [1,e) is called a fundamental domain for
the action of T on G, since for every g € G, there is exactly one hg € I such that ghg € [1,¢).
We thus have for every g € G,

/ Xiey (9) dp () = / Xiot-tey (W) dpgg () = 1 -z ({ho}),
H H



which is a finite constant, since py is H-invariant. Now taking f = m)que), we have

1
/T pr({ho})

- / / £(gh) dur () dpgr(hT) = / £(9) dps(g) <0
GI' JTI' G

r(G/T) = /G g rlar) = /G : / Xty (gh) dpur () dprgs (kD)

since f is compactly supported. This means that the measure on G/I is finite and T is a
lattice.

In fact, using the compatible isomorphisms Rsg 2 R, I" 2 Z, we obtain G/T homeo R/Z = St,
which is compact, and therefore has finite measure.

G= {(8 ab1> ca,b e R a # 0}, see exercise 2b) on Sheet 2.

Solution. By Sheet 2, Exercise 2b), we know that G is not unimodular. However, Proposition
2.70 states that if a locally compact Hausdorff group admits a lattice, then it is unimodular.
We conclude that G does not admit a lattice.

The Heisenberg group

rx,y,z €R
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see exercise 2a) on Sheet 2.

Solution. We consider the integer points

.= cx,y,z €7y <G,

OO =
O = 8
i SR\

and notice that I" is a group and discrete. It remains to show that G/T" admits a finite G-
invariant regular Borel measure. Even though G is not abelian, it is unimodular, see Sheet
2, exercise 2a). Since T is a discrete group, it is also unimodular. Hence Ag|r = Ar, and by
the Weyl formula (Theorem 2.68), there is a G-invariant regular Borel measure g r on G/T'.
We claim that the subset

R:= cx,y,2€[0,1) ) CG

o O
oS =8
[ S

is a fundamental region of the action of I' on G. Indeed, for any g € GG, we can find an hy € T’
such that hyg € R, by applying first

1 10 1 00 1 0 1
0 1 0}, then 01 1 and finally 01 0
0 0 1 0 0 1 0 0 1



from the left. We also note that hy is unique, as for every h € I' and r € R, if hr € R, then
h =1d. Now the measure of the fundamental domain is (up to a positive multiplication) given
by the Haar measure of R, as can be calculated using the Weyl formula

/ / F(gh) dur(h) dpags o (aT) = / £(9) dpie ()
G/T JH G

applied to the characteristic function f = yg.

Exercise 2 (Regular Subgroups are closed). Let G be a Lie group, H < G a subgroup that is also
a regular submanifold. Prove that H is a closed subgroup of G.

Solution. Let x € H. As G is clearly first countable, we find (z,)neny € HY such that z =
lim, o0 2. Let V. C W C W C U open neighbourhoods of 1 € G with compact closure and
assume that ¢ : U — (—1,1)4m is a chart as in the definition of a regular submanifold. Assume
furthermore that V is symmetric and V'V C W. By assumption, there is N > 1 such that z,, € 2V
for all n > N, thus xg,lxn eV lzg=2V =VV C W for all n > N, and thus J:X,lxn c HNVV C
H NW. We note that H N W is compact by the choice of U. Indeed, ¥(W) C (—1,1)3m& js
compact, and so is (W) N {0}dimEG—dimH » (1 1)dimH Byt g te, is convergent and has a limit
yin HNW; whence zyy =« € H.

Exercise 3 (The Matrix Lie Group O(p, q)). Let p,q € N and n = p+¢q. We define the (indefinite)
symmetric bilinear form (-, -), , of signature (p,q) on R™ to be

(v, W)p,g = V1WL + -+ + VPWp = Vp1Wpi1 =+ * = UptqWpiq
for all v = (v1,...,v,),w = (wy,...,w,) € R™. Show that
O(p,q) :={A € GL(n,R) : (Av, Aw)p g = (v, w)pq Yv,w € R"}.
is a Lie group using the inverse function theorem/constant rank theorem. What is its dimension?

Solution. We define

I, q:=diag(l,...,1,—-1,...,—-1)
—— ————
p-times g-times

to be the diagonal matrix that has +1 in the first p entries along the diagonal and —1 in the last ¢
entries. It is easy to see that

O(p,q) == {A € GL(n,R) : ATIp,qA = Ip,q} .

Now, define
f:GL(n,R) — R™" A ATT, A,

such that O(p,q) = f~'(I,4). The map f is smooth as every entry of f(A) is a polynomial in the
entries of A € GL(n,R).

We proceed by showing that f has constant rank. Let X € T4 GL(n,R) 2 R"*™ A € GL(n,R).
We compute directly



DAf(X) (A+tX)TL, (A +tX)

t=0

== (ATL, A+t - XT1, A+t AT, X +°- X1,  X)
t=0

- XTIMA + ATIWJX = (ATIWJX)T + ATIIMIX'

Tt
d

We claim that the image consists of all symmetric matrices Sym,,(R) C R™*™ and that Daf :
T4 GL(n,R) 2 R"*™ — Sym,, (R) is onto. For that consider the projection

p: R — Sym, (R),
X i(x+x7).
It is easy to check that pop = p and p\symn(R) = Id, such that p is onto. Since,
Daf(X) =2 'P(ATIpqu)
and A is invertible, D4 f is also onto. Therefore, f has constant rank dim Sym,, (R).

It follows that O(p,q) is a Lie group as multiplication m : GL(n,R) x GL(n,R) — GL(n,R) and
inversion i : GL(n,R) — GL(n,R) are smooth maps and hence restrict to smooth maps on the
regular submanifold O(p, ¢) C GL(n,R).

Every symmetric matrix is uniquely determined by its entries above and on the diagonal such that

1
dimSymn(R)=n+(n—1)+...+1:@.

The constant rank theorem then yields

dim O(p, ¢) = dim f (I, ;) = dim GL(n,R) — rank D4 f
o n(n+1) n(n-1)
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Exercise 4. Let M be a smooth n-dimensional manifold and p € M. Show that if (U, ¢) is any
chart at p with ¢(p) = 0, then the map

R™ = T,M, v (f+ Do(fop H)(v))
is a vector space isomorphism.
Solution. We defined the tangent space T),M at p as
T,M = {X,: C*(p) — R: linear forms that satisfy the Leibnitz rule }

where C°(p) is the set of germs of functions at p. We first note that the map v defined in the exercise
does take values in T, M. For f,g € C*(p) and X € R, have ¢(v)(Af+g) = Do((Af+g)op™1)(v) =



ADo(f oo™ 1)(v) + Do(g o o) (v) = Mp(v)(f) + 1 (v)(g). Next, we check the Leibnitz rule, which
follows from the product rule
b()(f-9)=Do(f-gop ")(v)
=Do((foe™)-(gop "))
=Do(foe™)(v)-(gop™)
=¢()(f) - 9(p) + f(p) - (v

We check that 1 is a linear map, let v,w € R™ and A € R. Then
Y+ w) = f = Do(foe™)(w+w)
= f = ADo(f o ¢™")(v) + Do(f o o™ ")(w)
= Mp(v) + h(w).
We give an explicit inverse
0: T,M — R"
Xp = (Xp(fl)a T 7Xp(fn))
where f;: M — R are defined as f; = m; 0 with 7(vy,...,v,) = v;. We check that 8(¢)(v)) = v for
all v € R™.
0(4(v)) = (Do(froe™")(v),-... Dolfa 0™ ")(v))
= (Do(m1)(v), ..., Do(ma)(v))
= (v1,...,0p).

For the other direction, we first describe some f € C°°(p). We consider the Taylor series at 0
of fop !l:R®™ — R. The statement of Taylor’s theorem for multivariate functions is that for

x=(x1,...,2,) € R?,
foo(z) =c+ZAi-xi+Zuij(x) x
i i,j

where
0

oz, fop™ €

0

c=fop (0)=f(p) €R, N =

and for z € ¢(U)

0 0

. _ —1 . . . . _
pij(w) = z; O foe™ +hij(x)  with ili% hij(z) = 0.

0

In terms of functions, we have fop™ =c+ > N m+ > pij-m-mjand f=c+ > Ai-mop+
> (pijow) - (miow)-(mjop). Applying a tangent vector X, to f gives

X, (f) = Xp(c +Z/\X miop)+ Y Xp((nij o @) - (mi 0 9)) - w3 (p(p)) + g (9(p)) - mil () - Xp(mj 0 )

ij
+ Z XiXp(m; 0 )



using the Leibnitz rule and the fact that m; o o(p) = 7;(0) = 0. For the constant term, we can use
the Leibnitz rule again to obtain X,(c¢) = X,(1-¢) = Xp(1)-c+1- X,(c), so X(1) - ¢ = 0. Thus
¢ =0 (hence X,(c) =0), or X,,(1) = 0 in which case also X,(c) = ¢X,(1) = 0. Let us now calculate
P(0(Xp))

Xy(f1)
Y(O(Xp))(f) = Do(fop™)

Xp(fn)
(fow™) - Xu(fi)

0
- Z Ox;
= Z)\iXp(ﬂi o 90) e Xp(f)

We have shown that 6 is an inverse of 1, hence R™ = T, M.



