
Dr. D. Semola Introduction to Lie Groups FS 2024

Solutions to Exercise Sheet 5

Exercise 1 (Discrete Subgroups of Rn). Let D < Rn be a discrete subgroup. Show that there are
x1, . . . , xk ∈ D such that

• x1, . . . , xk are linearly independent over R, and

• D = Zx1 ⊕ · · · ⊕ Zxk, i.e. x1, . . . , xk generate D as a Z-submodule of Rn.

Solution. We will prove this by induction on the dimension n.

Let n = 1 and let D < R be a discrete subgroup. Without loss of generality we may assume that
D ̸= {0}. Since D is discrete there is x1 ∈ D \ {0} such that |x1| = min{|x| : x ∈ D \ {0}}. We
claim that D = Zx1. Suppose there is y ∈ D \ Zx1. Then there is k ∈ Z such that

k · x1 < y < (k + 1) · x1.

It follows that y − k · x1 ∈ D and |y − k · x1| < |x1| which contradicts the minimality of x1. This
shows that D = Zx1 and finishes the proof of the base case n = 1.

Let n ∈ N and assume the statement holds for all discrete subgroups of Rn−1. Let D < Rn be a
discrete subgroup. Without loss of generality we may assume that D ̸= {0}. There is x1 ∈ D \ {0}
such that ∥x1∥ = min{∥x∥ : x ∈ D\{0}}. Consider the quotient Rn/Rx1 ∼= Rn−1 and the projection

π : Rn −→ Rn/R · x1 ∼= Rn−1

onto it.

We claim that D′ = π(D) < Rn−1 is a discrete subgroup. We will see this by showing that
V ′ := π(Br(0)) is an open neighborhood of 0 ∈ D′ such that V ′∩D′ = {0} where r := inf{∥t·x1−y∥ :
t ∈ R, y ∈ D \ Zx1}.

First of all, we need to see that r is in fact positive. In order to prove this let us verify that

r = inf{∥t · x1 − y∥ : t ∈ R, y ∈ D \ Zx1} = inf{∥t · x1 − y∥ : t ∈ [0, 1], y ∈ D \ Zx1}.

Clearly, the left-hand-side is less than or equal to the right-hand-side. On the other hand, if R ≥ 0
such that there are t ∈ R and y ∈ D \ Zx1 satisfying R ≥ ∥t · x1 − y∥ then also

R ≥ ∥t · x1 − y∥ = ∥(t− ⌊t⌋)x1 − (y − ⌊t⌋x1)∥;

whence there are s := t− ⌊t⌋ ∈ [0, 1] and w := (y − ⌊t⌋x1) ∈ D \ Zx1 such that R ≥ ∥s · x1 − w∥.
Therefore, the right-hand-side is also less than or equal to the left-hand-side such that they must be
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equal. Because {t ·x1 : t ∈ [0, 1]} ⊂ Rn is compact and D \Zx1 is discrete the infimum on the right-
hand-side is in fact a minimum. It is attained at some t0 ·x1 and y0 ∈ D\Zx1. If r = ∥t0 ·x1−y0∥ = 0
then y0 = t0x1 and t0 ∈ (0, 1) because y0 /∈ Zx1. But then ∥y0∥ = t0∥x1∥ < ∥x1∥ which contradicts
the minimality of ∥x1∥; whence r > 0.

Clearly, π : Rn → Rn−1 is an open map such that V ′ = π(Br(0)) is an open neighborhood of
0 ∈ Rn−1. Now, let x′ ∈ D′ ∩ V ′, i.e. x′ = π(u) = π(y) for some u ∈ Br(0), y ∈ D. Then
y − u ∈ Rx1, i.e. y − u = t · x1 for some t ∈ R. This implies that

∥y − t · x1∥ = ∥u∥ < r = inf{∥y − t · x1∥ : t ∈ R, y ∈ D \ Zx1}.

We deduce that y ∈ Zx1 ⊂ Rx1; whence x′ = π(y) = 0 and V ′ ∩ D′ = {0}. Therefore, 0 is an
isolated point in D′ such that D′ is a discrete subgroup of Rn−1 as claimed.

By the induction hypothesis there are x′2, . . . , x
′
k ∈ D′ < Rn−1 which are linearly independent

over R and generate D′ as a Z-submodule, i.e. D′ = Zx′2 ⊕ · · · ⊕ Zx′k. We choose for every x′i a
preimage xi ∈ π−1(x′i) ∩D. These x1, x2, . . . , xk ∈ D are linearly independent over R and satisfy
D = Zx1 ⊕ · · · ⊕ Zxk. Indeed, let λ1, . . . , λk ∈ R such that

λ1x1 + λ2x2 + · · ·+ λkxk = 0. (1)

Then

0 = π(λ1x1 + λ2x2 + · · ·+ λkxk)

= λ1π(x1)︸ ︷︷ ︸
=0

+λ2π(x2) + · · ·+ λkπ(xk)

= λ2x
′
2 + · · ·+ λkx

′
k.

Because x′2, . . . , x
′
k are linearly independent, λ′2 = . . . = λ′k = 0. By (1), λ1x1 = 0. Finally, since

x1 ̸= 0 also λ1 = 0.

In order to see that x1, . . . , xk generate D as a Z-module, let y ∈ D. Then

π(y) = a2x
′
2 + · · ·+ akx

′
k = a2π(x2) + · · ·+ akπ(xk)

for some a2, . . . , ak ∈ Z since x′2, . . . , x
′
k generate D′ as a Z-module. Considering y′ = a2x2 + · · ·+

akxk ∈ D we obtain

π(y′) = π(a2x2 + · · ·+ akxk) = a2π(x2) + · · ·+ akπ(xk) = π(y)

by linearity such that y − y′ ∈ D ∩ kerπ = D ∩ Rx1.

We claim that D ∩ kerπ = Zx1. It is immediate that Zx1 ⊆ D ∩ kerπ. To see the other inclusion
suppose that there is t · x1 ∈ D for some t ∈ R \ Z. Then w = (t− ⌊t⌋) · x1 ∈ D \ {0} and

∥w∥ = (t− ⌊t⌋) · ∥x1∥ < ∥x1∥

in contradiction to the minimality of x1.
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Therefore, y − y′ ∈ Zx1 and there exists a1 ∈ Z such that

y = a1x1 + y′ = a1x1 + a2x2 + · · ·+ akxk.

Hence, D = Zx1 ⊕ · · · ⊕ Zxk.

Exercise 2. Show that every connected abelian Lie group G is isomorphic as a Lie group to
Ta × Rn−a for some a ∈ {0, . . . , n}, where n = dimG and T ∼= R/Z.

Solution. The Lie algebra ofG is isomorphic to the abelian Lie algebra g := Rn, which also happens
to be the Lie algebra of the Lie group H := Rn. By Theorem 3.89, the Lie algebra isomorphism
Lie(H) ∼= Lie(G) lifts to a local Lie group isomorphism U → G for some open neighborhood
U ⊆ H of 0 ∈ H. By the Local Isomorphism Theorem 2.37, since H is path-connected and simply
connected, the local Lie group isomorphism extends to a continuous homomorphism φ : H → G.
We note that φ(U) is a neighborhood of e ∈ G, and φ is surjective since

G =
⋃
n∈N

φ(U)n

by one of the first properties of topological groups. By the isomorphism theorem, we obtain G ∼=
H/ker(φ) as groups. We claim that ker(φ) is discrete, indeed ker(φ) ∩ U = {0}, whence {0} is
open. Since ker(φ) acts on H by homeomorphism, all singletons in ker(φ) are open, hence ker(φ)
is discrete.

By Exercise 1 of this sheet, there are linearly independent x1, . . . , xa such that ker(φ) =
⊕

i Zxi.
Let V = ⟨x1, . . . , xa⟩ and H = Rn = V × V ⊥.

G = H/ ker(φ) = V × V ⊥/ker(φ) = V/ker(φ)× V ⊥ ∼= Ra/Za × Rn−a

first of all as abstract groups, but also as Lie groups, since φ is a smooth cover since ker(φ) is
discrete.

Exercise 3 (Easy Direction of Frobenius’ Theorem). Let M be a smooth manifold and let D be a
distribution on M . Show that D is involutive if it is completely integrable.

Solution. Let U ⊂M be an open set and {X1, . . . , Xn} a local basis of D defined on U . Further,
let q ∈ U and suppose q is contained in an integral submanifold φ : N ↪→ M of D such that
dpφ(TpN) = Dp for every p ∈ N , where φ : N ↪→M is an injective immersion. Let p ∈ φ−1(q) and
choose open neighborhoods V ′ ⊂ N about p and U ′ ⊂ U about q such that φ|V ′ : V ′ → U ′ is a
smooth embedding. By using a local slice chart it is easy to see that the vector fields {Y1, . . . , Yn}
defined via

dp′φ(Yi) = (Xi)φ(p′) ∀p′ ∈ V ′ ∀i = 1, . . . , n (⋆⋆)

are smooth vector fields on V ′ ⊂ N . Here we have used that {(X1)φ(p′), . . . , (Xn)φ(p′)} is a basis of
Dφ(p′) = dp′φ(Tp′N) and that the differential of dp′φ is injective for every p′ ∈ V ′. Note that (⋆⋆)
means that Yi is φ-related to Xi for every i = 1, . . . , n. By exercise 1 also [Yi, Yj ] is φ-related to
[Xi, Xj ], i.e.

[Xi, Xj ]φ(p′) = dp′φ[Yi, Yj ]p′ ,

for every i, j = 1, . . . , n. Because {Y1, . . . , Yn} are smooth vector fields on V ′ ⊂ N also [Yi, Yj ]p′ is
a smooth vector field on V ′ ⊂ N . This implies that [Xi, Xj ]φ(p′) ∈ dp′φ(Tp′N) = Dφ(p′) for every
p′ ∈ V ′; in particular [Xi, Xj ]q ∈ Dq. Therefore D is involutive.
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Exercise 4. (a) Show that every continuous group homomorphism from R to a Lie group is
smooth.

Solution. This is Proposition 3.13 in Prof. Alessandra Iozzi’s notes, proved on pages 86 and
87

(b) Show that every continuous group homomorphism between two Lie groups is smooth.

Solution. This is Theorem 3.14 in Prof. Alessandra Iozzi’s notes, proved on pages 85 and
86 using part (a) of the exercise.

In fact, one can prove that every measurable homomorphism between two locally compact topo-
logical groups is continuous, hence every measurable homomorphism between two Lie groups is
smooth.

Exercise 5. (Corollary 3.93(2)) Show that if two simply connected, connected Lie groups G1, G2

have isomorphic Lie algebra, then they are isomorphic.

Solution. Theorem 3.89 from the lecture states that since the Lie algebras are isomorphic f : g1 ∼=
g2, there is a local isomorphism φ : U → G2 for an open neighborhood U ⊆ G1 of e1 ∈ G1.
Now since G1 is is simply connected (and connected, hence path-connected), there is a unique lift
φ̄ : G1 → G2, which is a continuous homomorphism (Theorem 2.37). Now we can apply Exercise
4(b) or use the fact that it is smooth around e1 to make sure that φ̄ is a smooth homomorphism
with De1 φ̄ = f : g1 → g2. Similarly we can invert the role of G1 and G2 to obtain a smooth
homomorphism ψ̄ : G2 → G1 with De2 ψ̄ = f−1 : g2 → g1.

We may assume that the neighborhoods U ⊆ G1 and V ⊆ G2 on which the local isomorphisms
φ,ψ are defined, are given by U = exp(L) and V = exp(f(L)) for an open subset L ⊆ g1, so that
φ(U) = V and ψ(V ) = U .

We now claim that φ̄ is a covering, i.e. for every g2 ∈ G2 there is a neighborhood V2 ⊆ G2 of g2
such that φ̄−1(V2) is a disjoint union of open sets U1 ⊆ G1 wich are homeomorphic to V2.

For g2 ∈ G2 we take g2V as the open neighborhood. We have

φ̄−1(g2V ) = ∪g∈φ̄−1(g2)gU

so we just have to prove that the gU are disjoint: if there are g, g′ ∈ φ̄−1(g2) with g′ ∈ gU , then
g−1g′ ∈ U , and so φ̄(g−1g′) = φ̄(g)−1φ̄(g′) = g−1

2 g2 = e2 ∈ φ̄(U) = V , hence g−1g′ = e1 and
g = g′.

Now a covering of a simply connected space is bijective, so φ̄ : G1 → G2 is a bijective smooth group
homomorhpism with invertable differential, so the inverse is also a smooth group homomorphism,
so G1

∼= G2 are isomorphic Lie groups.
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