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Solutions to exercise Sheet 6

Exercise 1 (The adjoint representation is smooth). Let G be a Lie group with Lie algebra g. Show
that Ad: G → GL(g), g 7→ Ad(g) is smooth, where Ad(g) := De(int(g)).

Hint: Consider the map int(g) : G → G, x 7→ gxg−1. Use that expG is a local diffeomorphism to
conclude that Ad is smooth near e. Then use left translation to show that Ad is smooth everywhere.

Solution. Consider the map F : G × G → G defined by F (g, h) := ghg−1. This is smooth, so its
differential DF : TG× TG → TG is smooth. Restrict in the second component to the submanifold
TeG = g. The zero vector field 0: G → TG is a smooth map, thus the map

G× g → TG, (g,X) 7→ DF (0(g), X)

is smooth as well. From the construction, we have

D(g,e)F (0(g), X) = d
dt |t=0

F (g, exp(tX)) = d
dt |t=0

g exp(tX)g−1 = Ad(g)(X) ∈ TeG.

Thus the map G× g → g, (g,X) 7→ Ad(g)(X) is smooth. If you choose a basis for g, say {Xi} with
dual basis {X∗

i }, then the entries of the matrix representing Ad(g) with respect to the basis {Xi}
is X∗

i (Ad(g)(Xj)), so they depend smoothly on g, thus Ad: G → GL(g) is smooth.

Exercise 2 (Z(G) = Ker(Ad)). Let G be a Lie group and g its Lie algebra. Use the fundamental
relation that

g exp(tX)g−1 = exp(tAdg(X))

for all g ∈ G, t ∈ R and X ∈ g to prove the following.

(1) If G is connected, then the center Z(G) of G equals the kernel of the adjoint representation.

Solution. If g ∈ Z(G), then we have for all t ∈ R and X ∈ g that

exp(tX) = g exp(tX)g−1 = exp(tAdg(X))

and while exp may not be injective on all of g, it is injective on an open neighborhood of 0, in
particular there is a vector-space basis of g contained in the open neighborhood of 0 such that
X = Adg(X) for all elements of the basis. By linear extension, we then have that Adg = Id,
so g ∈ Ker(Ad).

If on the otherhand we start with g ∈ Ker(Ad), we apply the same formula to see that g
commutes with all elements in an open neighborhood of e ∈ G (contained in exp(g) ⊆ G).
Since G is connected, every element h ∈ G is of the form h = h1h2 · · ·hn for hi in the
neighborhood, and since g commutes with hi individually, it commutes with h, so g ∈ Z(G).
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(2) If G is connected, Z(G) is a closed subgroup and

Lie(Z(G)) = z(g) := {X ∈ g : ∀Y ∈ g, [X,Y ] = 0}.

Solution. Note that Z(G) = {g ∈ G : ∀h ∈ G, ghg−1h−1 = e}, so we can write

Z(G) =
⋂
h∈G

f−1
h (e) for fh(g) = ghg−1h−1

as a closed subgroup. By Corollary 3.97 we have

Lie(Z(G)) = Lie(Ker(Ad)) = Ker(DAd) = Ker(ad) = z(g)

since adX(Y ) = [X,Y ].

Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let K ≤ G be a closed normal
subgroup. Show that G/K can be equipped with a Lie group structure such that the quotient map
π : G → G/K is a surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U ⊂ g of the
origin such that exp |U : U → exp(U) is a diffeomorphism. Denote by k = Lie(K) the Lie algebra
associated to K. Choose any complement l such that g = k⊕ l as vector spaces. Define

V := U ∩ l.

Since V ∩ k = {0} it is immediate to verify that π ◦ exp |V : V → G/K is a homeomorphism onto
the image. This gives us a local chart around the point K ∈ G/K. We can get an atlas by suitably
translating this chart by the natural action of G on G/K. This gives us back an atlas such that
each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the
following diagrams commute:

G×G G

G/K ×G/K G/K

m

π×π π

G G

G/K G/K

i

π π

By definition, the quotient map π : G → G/K is a smooth submersion with respect to this smooth
structure. Thus, it follows from the constant rank theorem that multiplication and inversion are
smooth, and G/K is a Lie group. Moreover, it is clear from the construction that K is the kernel
of π.

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer
(2013)
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Exercise 4 (Connectedness from quotients). Let G be a topological group and H < G a closed
subgroup. Show that if H and G/H are connected, then so is G.

Solution. We suppose that H and G/H are connected and that G = A∪B for disjoint, non-empty
open sets A and B in G. Assume without loss of generality that e ∈ A. Since H is connected, all
of its left cosets gH = Lg(H) are. Thus since each coset meets either A or B it must be contained
entirely in one of the two. Consequently, A and B are union of left cosets of H. If now p : G → G/H
denotes the projection map on left cosets, it follows that both p(A) and p(B) are non-empty disjoint.
Since p is open, p(A) and p(B) are open non-empty disjoint whose union is G/H, which contradicts
the connectedness of G/H.

Exercise 5 (Examples of solvable and nilpotent groups). Compute the derived series and the
central series of the Lie groups

G =

{(
a b
0 c

)
: a, b ̸= 0

}
, H =


1 a b
0 1 c
0 0 1

 and SL(2,R)

to decide whether they are are solvable and/or nilpotent. Find all weights for the inclusion-
representations ρG : G → GL(2,C), ρH : H → GL(3,C) and ρSL(2,R) : SL(2,R) → GL(2,C).
Solution. The derived series of a group G is defined by

G(i) = [G(i−1), G(i−1)] := ⟨ghg−1h−1 : g, h ∈ G(i−1)⟩,

while the central series is defined by Ci(G) = [G,Ci−1]. For

g =

(
a b
0 c

)
, h =

(
d e
0 f

)
∈ G

we have

ghg−1h−1 =

(
a b
0 c

)(
d e
0 f

)(
a−1 − b

ac
0 c−1

)(
d−1 − e

df

0 f−1

)
=

(
1 fc−bd−ae−bf−ec

cf

0 1

)
,

so

G(0) = G, G(1) =

{(
1 ⋆
0 1

)}
and G(2) = {Id},

whence G is solvable. A similar calculation shows that H is solvable with derived series

H(0) = H, H(1) =


1 0 ⋆
0 1 0
0 0 1

 and H(2) = {Id},

For SL(2,R) it is not very practical to multiply out a general element ghg−1h−1, instead we note
that (

a 0
0 a−1

)(
1 1
0 1

)(
a 0
0 a−1

)−1 (
1 1
0 1

)−1

=

(
1 a2 − 1
0 1

)
(
a−1 0
0 a

)(
1 0
1 1

)(
a−1 0
0 a

)−1 (
1 0
1 1

)−1

=

(
1 0

a2 − 1 1

)
(
a 0
0 a−1

)(
0 −1
1 0

)(
a 0
0 a−1

)−1 (
0 −1
1 0

)−1

=

(
a2 0
0 a−2

)
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These three elements together with their inverses generate a neighborhood of Id and since SL(2,R)
is connected, they generate the whole group, so SL(2,R)(i) = SL(2,R) and thus SL(2,R) is not
solvable.

For the central series we obtain

C0(G) = G, C1(G) = G(1) =

{(
1 ⋆
0 1

)}
and C2(G) = [G,C1(G)] = C1(G) . . .

C0(H) = H, C1(H) = H(0) and C2(H) = {Id}
Ci(SL(2,R)) = SL(2,R)

so H is nilpotent, while G and SL(2,R) are not.

A weight of a representation G → GL(V ) for a complex vector space V is a group homorphism
χ : G → C⋆ such that

Vχ := {X ∈ V : ρ(g)(X) = χ(g) ·X for all g ∈ G} ≠ {0}.

For G ⊆ GL(2,C), if

ρ(g)

(
u
v

)
=

(
au+ bv

cv

)
= χ(g) ·

(
u
v

)
,

then v = 0 and χ(g) = a, so the only weight is

χ :

(
a b
0 c

)
7→ a with Vχ =

〈(
1
0

)〉
̸= {0}.

For H we have

ρ(g)

(
u
v

)
=

u+ av + bw
v + cw

w

 = χ(g) ·

u
v
w

 ,

then w = 0 and v = 0, so χ(g) = 1, so the only weight is the constant one weight χ1 with weight
space

Vχ1
=

〈1
0
0

〉
̸= {0}.

Finally for SL(2,R) there are no weights at all.
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