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Solutions to exercise Sheet 6

Exercise 1 (The adjoint representation is smooth). Let G be a Lie group with Lie algebra g. Show
that Ad: G — GL(g), g — Ad(g) is smooth, where Ad(g) := D.(int(g)).

Hint: Consider the map int(g): G — G, z — grg~!. Use that exp is a local diffeomorphism to
conclude that Ad is smooth near e. Then use left translation to show that Ad is smooth everywhere.

Solution. Consider the map F: G x G — G defined by F(g,h) := ghg~!. This is smooth, so its
differential DF': TG x TG — TG is smooth. Restrict in the second component to the submanifold
T.G = g. The zero vector field 0: G — T'G is a smooth map, thus the map

Gxg—TG, (9, X) — DF(0(g), X)
is smooth as well. From the construction, we have

Dy F(0(g), X) = F(g,exp(tX)) gexp(tX)g~" = Ad(g)(X) € T.G.

4 =4
dt [t=0 dt |t=0

Thus the map G x g — g, (g, X) — Ad(g)(X) is smooth. If you choose a basis for g, say {X;} with
dual basis { X/}, then the entries of the matrix representing Ad(g) with respect to the basis {X;}
is X (Ad(g)(X;)), so they depend smoothly on g, thus Ad: G — GL(g) is smooth.

Exercise 2 (Z(G) = Ker(Ad)). Let G be a Lie group and g its Lie algebra. Use the fundamental
relation that
gexp(tX)g~" = exp(t Ady(X))

for all g € G,t € R and X € g to prove the following.

(1) If G is connected, then the center Z(G) of G equals the kernel of the adjoint representation.
Solution. If g € Z(G), then we have for all ¢ € R and X € g that

exp(tX) = gexp(tX)g~" = exp(t Ady(X))

and while exp may not be injective on all of g, it is injective on an open neighborhood of 0, in
particular there is a vector-space basis of g contained in the open neighborhood of 0 such that
X = Ady(X) for all elements of the basis. By linear extension, we then have that Ad, = Id,
so g € Ker(Ad).

If on the otherhand we start with g € Ker(Ad), we apply the same formula to see that g
commutes with all elements in an open neighborhood of e € G (contained in exp(g) C G).
Since G is connected, every element h € G is of the form h = hjhs---h, for h; in the
neighborhood, and since g commutes with h; individually, it commutes with h, so g € Z(G).



(2) If G is connected, Z(QG) is a closed subgroup and
Lie(Z(G)) =3(g) ={X € g: VY € g,[X,Y] =0}.

Solution. Note that Z(G) = {g € G: Vh € G,ghg~'h~! = e}, so we can write

Z2G)= () £y '(e) for fulg) =ghg 'h™
heG

as a closed subgroup. By Corollary 3.97 we have
Lie(Z(G)) = Lie(Ker(Ad)) = Ker(D Ad) = Ker(ad) = 3(g)
since adx (V) = [X,Y].

Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let K < G be a closed normal
subgroup. Show that G/K can be equipped with a Lie group structure such that the quotient map
m: G — G/K is a surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U C g of the
origin such that exp |y : U — exp(U) is a diffeomorphism. Denote by £ = Lie(K) the Lie algebra
associated to K. Choose any complement [ such that g =€ @ [ as vector spaces. Define

V:=UnNL

Since V Nt = {0} it is immediate to verify that m oexp|y : V — G/K is a homeomorphism onto
the image. This gives us a local chart around the point K € G/K. We can get an atlas by suitably
translating this chart by the natural action of G on G/K. This gives us back an atlas such that
each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the
following diagrams commute:

GxG@ —— @ G ——— G

be kL

G/K x G/K ----- » G/K G/K ----- » G/K

By definition, the quotient map 7: G — G/K is a smooth submersion with respect to this smooth
structure. Thus, it follows from the constant rank theorem that multiplication and inversion are
smooth, and G/K is a Lie group. Moreover, it is clear from the construction that K is the kernel
of .

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer
(2013)



Exercise 4 (Connectedness from quotients). Let G be a topological group and H < G a closed
subgroup. Show that if H and G/H are connected, then so is G.

Solution. We suppose that H and G/H are connected and that G = AU B for disjoint, non-empty
open sets A and B in G. Assume without loss of generality that e € A. Since H is connected, all
of its left cosets gH = Ly(H) are. Thus since each coset meets either A or B it must be contained
entirely in one of the two. Consequently, A and B are union of left cosets of H. If now p: G — G/H
denotes the projection map on left cosets, it follows that both p(A) and p(B) are non-empty disjoint.
Since p is open, p(A) and p(B) are open non-empty disjoint whose union is G/H, which contradicts
the connectedness of G/H.

Exercise 5 (Examples of solvable and nilpotent groups). Compute the derived series and the
central series of the Lie groups

1 a b

G:{(g i):a,b;«éo}, H={|0 1 ¢ and  SL(2,R)
00 1

to decide whether they are are solvable and/or nilpotent. Find all weights for the inclusion-
representations pg: G — GL(2,C), py: H — GL(3,C) and pgr,2,r): SL(2,R) — GL(2,C).

Solution. The derived series of a group G is defined by
G = [GOY GV .= (ghg™'h™t: g,h € GUTY)Y,
while the central series is defined by C*(G) = [G, C*~]. For

b d e
1=(5 ) n=(5 7)ec
we have

— b -1 _ e fe—bd—ae—bf—ec
ghg~'h~! = a b\ [(d e\ (a7t : d A I
0 ¢/ \0 f 0 ¢ o f! 0 1 ’

GO —q  a- {((1) ;)} and G2 — {14},

whence G is solvable. A similar calculation shows that H is solvable with derived series

1 0 =
0 0 and  H® = {Id},
0 1

—~

o

SO

HO =g, HY= 1
0
For SL(2,R) it is not very practical to multiply out a general element ghg~*h~!, instead we note
that
a 0N/1 1\{a 0\ '/1 1\ ' (1 a®2-1
0 a')\0 1)\0 a! 0 1) —\0o 1
a™l 0\ (/1 0\ /at 0\ '/1 O\ [/ 1 o0
0 a/\1 1 0 a 11 T \a?-1 1
a 0)[(0 —1\[a O\ '/0 —=1\" [a® o0
0 at)\1 0 0 at 10 “\0 a2



These three elements together with their inverses generate a neighborhood of Id and since SL(2,R)
is connected, they generate the whole group, so SL(2,R)® = SL(2,R) and thus SL(2,R) is not
solvable.

For the central series we obtain

G =6, cYG)=acW = {(é I)} and  C?(G) =[G,CYG) =CYq)...

C'Hy=H, CYH)=H® and C*H)={1d}
C*(SL(2,R)) = SL(2,R)

so H is nilpotent, while G and SL(2,R) are not.

A weight of a representation G — GL(V) for a complex vector space V is a group homorphism
x: G — C* such that

Vi ={X e V:p(9)(X)=x(g)- X for all g € G} # {0}.

o) (1) = (") =xt- (1),

then v = 0 and x(g) = a, so the only weight is

X (8 i)ea with VX:<<(1])>7£{0}.

" u+ av + bw u
p(g) (U) = v+ cw =x(g)-|v],

w w

For G C GL(2,C), if

For H we have

then w = 0 and v = 0, so x(g) = 1, so the only weight is the constant one weight y; with weight

space
1

VX1:< 0 >7é{0}
0

Finally for SL(2,R) there are no weights at all.



