Dr. D. Semola Introduction to Lie Groups FS 2024

Solutions to exercise Sheet 7

Exercise 1 (Killing form of sl(2,R)). Choose a basis of s[(2,R) to compute the Killing form
Kaop)(X,Y) = 4tr(XY).

Solution. Recall that g :=sl(2,R) = {X € RP2: t1X = 0} We choose a basis
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which allows us to identify gl(g) = gl(3,R). We want to compute the adjoint representation ad: g —

gl(g). We compute
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The Killing form is defined as K(X,Y) = tr(ad(X) o ad(Y)) and on the basis we calculate
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so writing the Killing form as a bilinear form in the basis we obtain

00 4
KX, Y)=X"10 8 0]Y
400

for X,Y € g = R3. Actually a calculation then shows that also K4(X,Y) = 4tr(XY).



Exercise 2 (The Killing form is invariant under the adjoint action). Let G be a connected Lie
group and g its Lie algebra. Prove that for all X, Y € gand g € G

KG(Ad(g)Xa Ad(g)Y) = KE(Xa Y)
Hint: Prove that ad(Ad(g)X) = Ad(g)ad(X) Ad(g)~!.

Solution. Let X,Y,Z € g and g € G. Since Ad(g) is the derivative of the Lie group automorphism
¢g, Ad is a Lie algebra automorphism, so Ad(g)[X,Y] = [Ad(¢)X, Ad(¢)Y]. Then ad(Ad(g9)X)(Z) =
[Ad(9)X, Z] = Ad(g)[X,Ad(g)"'Z] = Ad(g) ad(Y) Ad(g)~! proving the hint. Then
Kgy(ad(Ad(g)X) o ad(Ad(9)Y)) = tr (Ad(g) ad(X) Ad(g)~" Ad(gad(Y) Ad(g)™"))
=tr(ad(X)ocad(Y)) = K4(X,Y)

since the trace is invariant under conjugation.

Exercise 3 (Solvable Lie group without injective finite-dimensional representation). Consider the
three-dimensional Heisenberg group

1 =z =z
H = 0 1 y|:xz,y,2€R
0 0 1
Note that the center of H is
1 0 =z
Z(H) = 0 1 0]:z€eR
0 0 1
Let D < Z(H) be the following discrete subgroup
1 0 n
D :=SL3(Z)NZ(H) = 01 0):neZ
0 0 1

Check that G := H/D is a connected, solvable Lie group and show that G does not admit a smooth,
injective homomorphism into GL(V') for any finite-dimensional C-vector space V.

Hint: Observe that Z(H)/D = S! and consider its image under a potential representation and show
that its image can be conjugated into any small neighborhood of Id € GL(n,C). Then use the
no-small-subgroups property.

Solution. Since H is connected, so is G, and since both H and D are solvable, so is G. Assume
m: G — GL(V) is a smooth homomorphism for a finite-dimensional C-vector space V. We will
show that m(Z(H)/D) = 1d, that is Z(H)/D < ker m, so that = cannot be injective.

Let us observe first of all that, since D is discrete, then

0
Lie(H/D) = Lie(H) =h = 0 s x,y,z € R Cgl(3,R)
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and it is moreover solvable. Furthermore

0 0
Lie(Z(H)/D) = Lie(Z(H)) = { [0 0 = [5,5].
0 0
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By Lie’s theorem, if p := d.m, the image p(h) is upper triangular, so that [p(h), p(h)] is strictly
upper triangular. Thus

0 = *
plLiez(H)/D) = plln.01) = o) o < 4 [ ]
0 ' O. Ek)
from which it follows that
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Observe that since Z(H)/D ~ S!, then n(Z(H)/D) =: K is a compact subgroup of L. We will
show now that L cannot have non-trivial compact subgroups, which forces K = Id. In order to
show this, we will show that any compact subgroup can be conjugated into any small neighborhood
of Id € GL(n, C), thus contradicting that L is a Lie group.

To this purpose, let g = diag(A1, ..., A,) € GL(n,C) a diagonal matrix with entries 0 < A\; < Ay <
<o+ < Ap. Then, if i < j,
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€ K its entries are bounded and, since A;/A; < 1, the right hand side of (1)
*

0 1

converges to Id and is hence eventually contained in any neighborhood of Id, no matter how small.

Exercise 4 (Complex Lie algebras). Let g be a real Lie algebra and gc = g®rC the complexification
of g as a vector space.

(1)

Show that the bracket [-,-]: gxg — g extends uniquely to a C-bilinear map [, -]c: gcXgc — gc
turning gc into a complex Lie algebra.

Solution. It is clear that gc is a C-vector space. The universal property of the tensor product
states that for every bilinear map h: g x C — V for R-vectorspace V, there exists a unique
linear map h: gc — Z such that the following diagram commutes.

Solution. For any X € g and z € C we have a bilinear map h: g x C — gc defined by
hx .(Y,w) := [X,Y] ® zw. By the universal property there is a unique map hx .: gc — gc.
Now consider the map h': g x C — End(gc) defined by h/(X,2) := hx_. and notice that it
is also bilinear and thus by the universal property has a unique extension h’: gc — End(gc).
We define the bracket on generators as

[, ]ct gc x 9c = gc
(X®z,Y0w) —hMXe2)(Yow) =[X,Y]® 2w

It is clear that the brackets are bilinear. Next, [X ® 2, X @ z]c = [X, X]® 22 =0® 22 = 0
since [X, X] = 0. And finally, the Jacobi equality

X®z4[Y@w,Zovclc+[Y @w,[Z®v,X ®zclc+[Z2®v,[X ®2Y ®wc]c
=X, [V, Z]] @ zwv + [Y, [ Z, X]] @wvz + [Z,[ X, Y]] ® vzw
=(X,[Y,Z]| + [V, [Z, X]] + [Z,[X,Y]]) ® 2wv =0 ® zow = 0

holds on generators, so it holds always. This shows that gc is a complex Lie algebra.

Show that the canonical injection g — gc, X — X ®1 is a homomorphism of real Lie algebras
and, if we identify g with its image in gc, we have that

gc = g +1ig.

Express the bracket of g¢ in this decomposition.



Solution. Every complex Lie algebra can be viewed as a real Lie algebra by considering the C-
vectorspace as a R-vectorspace and taking the same brackets. The map f: g — g, X — X®1
is linear

FOX+Y) = QX +Y)@1=ANX®@1)+Y ®1=Af(X)+ f(Y)

and preserves the brackets
XY =X Y[el=[XeLYele=[f(X),(Y)
and is hence a homomorphism of real Lie algebras. The map f is clearly an injection. Let
h:g+ig — gc

defined on generators as h(X +iY) =X ®1+i(Y ®1) =X ®1+Y ®1i. Clearly h is linear
and h~!: gc — g+ig defined on generators as A" H(X ® 2) := X @z +i(X ®y) for z = z + iy
is a linear map and they are inverses of each other. If now X + Y, X' +4Y’ € g+ ig, then

(X +iV, X' +iVc=[X®14+4Y®i, X' @14+Y ®ilc
=X®LX'@lc+[X0LY' ®ic+[Y®LX @lc+[Y®1LY ®ic
=[X, X1+ [X,Y]@i+[V,X|®i+[V,Y] @i

(X XT-Y)el+(XY]+ [, X)) ei

(X, X'] = [V, Y']) +i([X, Y]+ [y, X]).

Show that g is solvable if and only if g¢ is solvable,

Solution. If h < g is an ideal, then he =: h ®r C < gc is an ideal. So any series of ideals

grgi>ge>...>{0}

corresponds to a series of ideals

gc > (g1)c > (g2)c> ... > {0}

If gi/gi+1 is abelian, then [X+gi+1,Y+gi+1] = [X, Y] +giv1 = 0e gi/gi+1 for all X, Y € 9i-
For X +iY + (gi+1)c, X' +4Y" 4+ (gi+1)c € (8i)c/(gi+1)c we then have
(X +3Y + (gir1)e, X'+ + (giy1)cle = [X +1Y, X +iY]c + (git1)c
= ([Xv X/] - [Yv Y/D +i([Xv Y/] + [Yv X/]) + (giJrl)(C
=0¢€ (gi)Ca

so if g is solvable, then g¢ is solvable.

If we start with an ideal hc C gc on the other hand, then b := hc N g is an ideal in g. In fact,
since h¢ is invariant under multiplication of C, we have that hc = h + ih as before. Then
starting from a series of ideals

gc > (g1)c > (g2)c> ... > {0}

we obtain a series of ideals
grgi>geb...>{0}.



If (g:)c/(8i41)c is abelian, it means that for every X +iY, X'+iY" € (g;)c we have [X+iY, X'+
iY']lc + gi+1 = 0. For X, Y € g; we then have [X + gi+1,Y + gi1] € (gi+1)c = gi+1 + igi11-
But since [g,g] Nigi+1 = 0, we have that [X + g;+1,Y + gix1] = 0 € g;/gi+1. So if gc is
solvable, then so is g.

Show that g is nilpotent if and only if g¢ is nilpotent.

Solution. If g is nilpotent, then in the notation of (3), [g,g:+1] C g;- So if X +4Y € gc and
X' +3Y' € (gi+1>c, then

(X +iY, X" +iY']c = (X, X'] = [V, Y']) +i([X, Y] + [V, X']) € gi +igi = (9i)c

as required.

If however gc is nilpotent, then [gc, (gi+1)c] € (gi)c. Since g C g and gir1 C (gi11)c, we
have that [g,g:+1] C (g:)c N g = gi, so g is nilpotent.



