Solutions to exercise Sheet 7

Exercise 1 (Killing form of $\mathfrak{s l}(2, \mathbb{R})$). Choose a basis of $\mathfrak{s l}(2, \mathbb{R})$ to compute the Killing form $K_{\mathfrak{s l}(2, \mathbb{R})}(X, Y)=4 \operatorname{tr}(X Y)$.
Solution. Recall that $\mathfrak{g}:=\mathfrak{s l}(2, \mathbb{R})=\left\{X \in \mathbb{R}^{2 \times 2}: \operatorname{tr} X=0\right\}$. We choose a basis

$$
X_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

which allows us to identify $\mathfrak{g l}(\mathfrak{g}) \cong \mathfrak{g l}(3, \mathbb{R})$. We want to compute the adjoint representation ad: $\mathfrak{g} \rightarrow$ $\mathfrak{g l}(\mathfrak{g})$. We compute

$$
\begin{aligned}
& {\left[\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{1}\right]=\left(\begin{array}{cc}
-c & 2 b \\
0 & c
\end{array}\right)} \\
& {\left[\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{2}\right]=\left(\begin{array}{cc}
0 & -2 a \\
2 c & 0
\end{array}\right)} \\
& {\left[\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{3}\right]=\left(\begin{array}{cc}
a & 0 \\
-2 b & -a
\end{array}\right)}
\end{aligned}
$$

so

$$
\operatorname{ad}\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right)=\left(\begin{array}{ccc}
2 b & -2 a & 0 \\
-c & 0 & a \\
0 & 2 c & -2 b
\end{array}\right) \in \mathfrak{g l}(\mathfrak{g})
$$

The Killing form is defined as $K_{\mathfrak{g}}(X, Y)=\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))$ and on the basis we calculate

$$
\begin{aligned}
K_{\mathfrak{g}}\left(\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{1}\right) & =\operatorname{tr}\left(\begin{array}{ccc}
2 b & -2 a & 0 \\
-c & 0 & a \\
0 & 2 c & -2 b
\end{array}\right)\left(\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{tr}\left(\begin{array}{ccc}
0 & -4 b & -2 a \\
0 & 2 c & 0 \\
0 & 0 & 2 c
\end{array}\right)=4 c \\
K_{\mathfrak{g}}\left(\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{2}\right) & =\operatorname{tr}\left(\begin{array}{ccc}
2 b & -2 a & 0 \\
-c & 0 & a \\
0 & 2 c & -2 b
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)=\operatorname{tr}\left(\begin{array}{ccc}
4 b & 0 & 0 \\
-2 c & 0 & -2 a \\
0 & 0 & 4 b
\end{array}\right)=8 b \\
K_{\mathfrak{g}}\left(\left(\begin{array}{cc}
b & a \\
c & -b
\end{array}\right), X_{3}\right) & =\operatorname{tr}\left(\begin{array}{ccc}
2 b & -2 a & 0 \\
-c & 0 & a \\
0 & 2 c & -2 b
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)=\operatorname{tr}\left(\begin{array}{ccc}
2 a & 0 & 0 \\
0 & 2 a & 0 \\
-2 c & -4 b & 0
\end{array}\right)=4 a,
\end{aligned}
$$

so writing the Killing form as a bilinear form in the basis we obtain

$$
K_{\mathfrak{g}}(X, Y)=X^{\top}\left(\begin{array}{ccc}
0 & 0 & 4 \\
0 & 8 & 0 \\
4 & 0 & 0
\end{array}\right) Y
$$

for $X, Y \in \mathfrak{g} \cong \mathbb{R}^{3}$. Actually a calculation then shows that also $K_{\mathfrak{g}}(X, Y)=4 \operatorname{tr}(X Y)$.

Exercise 2 (The Killing form is invariant under the adjoint action). Let G be a connected Lie group and \mathfrak{g} its Lie algebra. Prove that for all $X, Y \in \mathfrak{g}$ and $g \in G$

$$
K_{\mathfrak{g}}(\operatorname{Ad}(g) X, \operatorname{Ad}(g) Y)=K_{\mathfrak{g}}(X, Y)
$$

Hint: Prove that $\operatorname{ad}(\operatorname{Ad}(g) X)=\operatorname{Ad}(g) \operatorname{ad}(X) \operatorname{Ad}(g)^{-1}$.
Solution. Let $X, Y, Z \in \mathfrak{g}$ and $g \in G$. Since $\operatorname{Ad}(g)$ is the derivative of the Lie group automorphism c_{g}, Ad is a Lie algebra automorphism, so $\operatorname{Ad}(g)[X, Y]=[\operatorname{Ad}(g) X, \operatorname{Ad}(g) Y]$. Then $\operatorname{ad}(\operatorname{Ad}(g) X)(Z)=$ $[\operatorname{Ad}(g) X, Z]=\operatorname{Ad}(g)\left[X, \operatorname{Ad}(g)^{-1} Z\right]=\operatorname{Ad}(g) \operatorname{ad}(Y) \operatorname{Ad}(g)^{-1}$ proving the hint. Then

$$
\begin{aligned}
K_{\mathfrak{g}}(\operatorname{ad}(\operatorname{Ad}(g) X) \circ \operatorname{ad}(\operatorname{Ad}(g) Y)) & =\operatorname{tr}\left(\operatorname{Ad}(g) \operatorname{ad}(X) \operatorname{Ad}(g)^{-1} \operatorname{Ad}\left(g \operatorname{ad}(Y) \operatorname{Ad}(g)^{-1}\right)\right) \\
& =\operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))=K_{\mathfrak{g}}(X, Y)
\end{aligned}
$$

since the trace is invariant under conjugation.
Exercise 3 (Solvable Lie group without injective finite-dimensional representation). Consider the three-dimensional Heisenberg group

$$
H=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

Note that the center of H is

$$
\mathrm{Z}(H)=\left\{\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): z \in \mathbb{R}\right\}
$$

Let $D<\mathrm{Z}(H)$ be the following discrete subgroup

$$
D:=\mathrm{SL}_{3}(\mathbb{Z}) \cap \mathrm{Z}(H)=\left\{\left(\begin{array}{lll}
1 & 0 & n \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): n \in \mathbb{Z}\right\} .
$$

Check that $G:=H / D$ is a connected, solvable Lie group and show that G does not admit a smooth, injective homomorphism into $\mathrm{GL}(V)$ for any finite-dimensional \mathbb{C}-vector space V.

Hint: Observe that $\mathrm{Z}(H) / D \cong S^{1}$ and consider its image under a potential representation and show that its image can be conjugated into any small neighborhood of $\operatorname{Id} \in \operatorname{GL}(n, \mathbb{C})$. Then use the no-small-subgroups property.

Solution. Since H is connected, so is G, and since both H and D are solvable, so is G. Assume $\pi: G \rightarrow \mathrm{GL}(V)$ is a smooth homomorphism for a finite-dimensional \mathbb{C}-vector space V. We will show that $\pi(Z(H) / D)=\mathrm{Id}$, that is $Z(H) / D<\operatorname{ker} \pi$, so that π cannot be injective.

Let us observe first of all that, since D is discrete, then

$$
\operatorname{Lie}(H / D)=\operatorname{Lie}(H)=\mathfrak{h}=\left\{\left(\begin{array}{lll}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right): x, y, z \in \mathbb{R}\right\} \subset \mathfrak{g l}(3, \mathbb{R})
$$

and it is moreover solvable. Furthermore

$$
\operatorname{Lie}(Z(H) / D)=\operatorname{Lie}(Z(H))=\left\{\left(\begin{array}{ccc}
0 & 0 & z \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}=[\mathfrak{h}, \mathfrak{h}]
$$

By Lie's theorem, if $\rho:=d_{e} \pi$, the image $\rho(\mathfrak{h})$ is upper triangular, so that $[\rho(\mathfrak{h}), \rho(\mathfrak{h})]$ is strictly upper triangular. Thus

$$
\rho(\operatorname{Lie}(Z(H) / D))=\rho([\mathfrak{h}, \mathfrak{h}])=[\rho(\mathfrak{h}), \rho(\mathfrak{h})] \subset\left\{\left(\begin{array}{cccc}
0 & * & \cdots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 0
\end{array}\right)\right\}
$$

from which it follows that

$$
\pi(Z(H) / D)<\left\{\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)\right\}=: L
$$

Observe that since $Z(H) / D \simeq S^{1}$, then $\pi(Z(H) / D)=: K$ is a compact subgroup of L. We will show now that L cannot have non-trivial compact subgroups, which forces $K=I d$. In order to show this, we will show that any compact subgroup can be conjugated into any small neighborhood of $\operatorname{Id} \in \operatorname{GL}(n, \mathbb{C})$, thus contradicting that L is a Lie group.

To this purpose, let $g=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \operatorname{GL}(n, \mathbb{C})$ a diagonal matrix with entries $0<\lambda_{1}<\lambda_{2}<$ $\cdots<\lambda_{n}$. Then, if $i<j$,

$$
\begin{aligned}
&\left(c_{g}\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)\right)_{i j}=\left(\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
\lambda_{1}^{-1} & & \\
& \ddots & \\
& & \\
& & \\
\lambda_{j} & \\
\lambda_{n}^{-1}
\end{array}\right)\right) \\
&\left.\begin{array}{ccccc}
1 & * & \ldots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)_{i j}
\end{aligned}
$$

so that

$$
\left.c_{g}^{n}\left(\begin{array}{cccc}
1 & * & \cdots & * \tag{1}\\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right)_{i j}=\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{n}\left(\begin{array}{cccc}
1 & * & \cdots & * \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \cdots & 0 & 1
\end{array}\right)_{i j}
$$

If $\left(\begin{array}{cccc}1 & * & \ldots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \ldots & 0 & 1\end{array}\right) \in K$ its entries are bounded and, since $\lambda_{i} / \lambda_{j}<1$, the right hand side of (1) converges to Id and is hence eventually contained in any neighborhood of Id, no matter how small.

Exercise 4 (Complex Lie algebras). Let \mathfrak{g} be a real Lie algebra and $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ the complexification of \mathfrak{g} as a vector space.
(1) Show that the bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ extends uniquely to a \mathbb{C}-bilinear map $[\cdot, \cdot]_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \rightarrow \mathfrak{g}_{\mathbb{C}}$ turning $\mathfrak{g}_{\mathbb{C}}$ into a complex Lie algebra.

Solution. It is clear that $\mathfrak{g}_{\mathbb{C}}$ is a \mathbb{C}-vector space. The universal property of the tensor product states that for every bilinear map $h: \mathfrak{g} \times \mathbb{C} \rightarrow V$ for \mathbb{R}-vectorspace V, there exists a unique linear map $\bar{h}: \mathfrak{g}_{\mathbb{C}} \rightarrow Z$ such that the following diagram commutes.

Solution. For any $X \in \mathfrak{g}$ and $z \in \mathbb{C}$ we have a bilinear map $h: \mathfrak{g} \times \mathbb{C} \rightarrow \mathfrak{g}_{\mathbb{C}}$ defined by $h_{X, z}(Y, w):=[X, Y] \otimes z w$. By the universal property there is a unique map $h_{X, z}: \mathfrak{g}_{\mathbb{C}} \rightarrow \mathfrak{g}_{\mathbb{C}}$. Now consider the map $h^{\prime}: \mathfrak{g} \times \mathbb{C} \rightarrow \operatorname{End}\left(\mathfrak{g}_{\mathbb{C}}\right)$ defined by $h^{\prime}(X, z):=\bar{h}_{X, z}$ and notice that it is also bilinear and thus by the universal property has a unique extension $\bar{h}^{\prime}: \mathfrak{g}_{\mathbb{C}} \rightarrow \operatorname{End}\left(\mathfrak{g}_{\mathbb{C}}\right)$. We define the bracket on generators as

$$
\begin{aligned}
{[\cdot, \cdot]_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} } & \rightarrow \mathfrak{g}_{\mathbb{C}} \\
(X \otimes z, Y \otimes w) & \mapsto \bar{h}^{\prime}(X \otimes z)(Y \otimes w)=[X, Y] \otimes z w
\end{aligned}
$$

It is clear that the brackets are bilinear. Next, $[X \otimes z, X \otimes z]_{\mathbb{C}}=[X, X] \otimes z^{2}=0 \otimes z^{2}=0$ since $[X, X]=0$. And finally, the Jacobi equality

$$
\begin{aligned}
& {\left[X \otimes z,[Y \otimes w, Z \otimes v]_{\mathbb{C}}\right]_{\mathbb{C}}+\left[Y \otimes w,[Z \otimes v, X \otimes z]_{\mathbb{C}}\right]_{\mathbb{C}}+\left[Z \otimes v,[X \otimes z, Y \otimes w]_{\mathbb{C}}\right]_{\mathbb{C}} } \\
= & {[X,[Y, Z]] \otimes z w v+[Y,[Z, X]] \otimes w v z+[Z,[X, Y]] \otimes v z w } \\
= & ([X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]) \otimes z w v=0 \otimes z v w=0
\end{aligned}
$$

holds on generators, so it holds always. This shows that $\mathfrak{g}_{\mathbb{C}}$ is a complex Lie algebra.
(2) Show that the canonical injection $\mathfrak{g} \rightarrow \mathfrak{g}_{\mathbb{C}}, X \mapsto X \otimes 1$ is a homomorphism of real Lie algebras and, if we identify \mathfrak{g} with its image in $\mathfrak{g}_{\mathbb{C}}$, we have that

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}+i \mathfrak{g}
$$

Express the bracket of $\mathfrak{g}_{\mathbb{C}}$ in this decomposition.

Solution. Every complex Lie algebra can be viewed as a real Lie algebra by considering the \mathbb{C} vectorspace as a \mathbb{R}-vectorspace and taking the same brackets. The map $f: \mathfrak{g} \rightarrow \mathfrak{g}_{\mathbb{C}}, X \mapsto X \otimes 1$ is linear

$$
f(\lambda X+Y)=(\lambda X+Y) \otimes 1=\lambda(X \otimes 1)+Y \otimes 1=\lambda f(X)+f(Y)
$$

and preserves the brackets

$$
f([X, Y])=[X, Y] \otimes 1=[X \otimes 1, Y \otimes 1]_{\mathbb{C}}=[f(X), f(Y)]_{\mathbb{C}}
$$

and is hence a homomorphism of real Lie algebras. The map f is clearly an injection. Let

$$
h: \mathfrak{g}+i \mathfrak{g} \rightarrow \mathfrak{g}_{\mathbb{C}}
$$

defined on generators as $h(X+i Y)=X \otimes 1+i(Y \otimes 1)=X \otimes 1+Y \otimes i$. Clearly h is linear and $h^{-1}: \mathfrak{g}_{\mathbb{C}} \rightarrow \mathfrak{g}+i \mathfrak{g}$ defined on generators as $h^{-1}(X \otimes z):=X \otimes x+i(X \otimes y)$ for $z=x+i y$ is a linear map and they are inverses of each other. If now $X+i Y, X^{\prime}+i Y^{\prime} \in \mathfrak{g}+i \mathfrak{g}$, then

$$
\begin{aligned}
{\left[X+i Y, X^{\prime}+i Y^{\prime}\right]_{\mathbb{C}} } & =\left[X \otimes 1+Y \otimes i, X^{\prime} \otimes 1+Y^{\prime} \otimes i\right]_{\mathbb{C}} \\
& =\left[X \otimes 1, X^{\prime} \otimes 1\right]_{\mathbb{C}}+\left[X \otimes 1, Y^{\prime} \otimes i\right]_{\mathbb{C}}+\left[Y \otimes 1, X^{\prime} \otimes 1\right]_{\mathbb{C}}+\left[Y \otimes 1, Y^{\prime} \otimes i\right]_{\mathbb{C}} \\
& =\left[X, X^{\prime}\right] \otimes 1+\left[X, Y^{\prime}\right] \otimes i+\left[Y, X^{\prime}\right] \otimes i+\left[Y, Y^{\prime}\right] \otimes i^{2} \\
& =\left(\left[X, X^{\prime}\right]-\left[Y, Y^{\prime}\right]\right) \otimes 1+\left(\left[X, Y^{\prime}\right]+\left[Y, X^{\prime}\right]\right) \otimes i \\
& =\left(\left[X, X^{\prime}\right]-\left[Y, Y^{\prime}\right]\right)+i\left(\left[X, Y^{\prime}\right]+\left[Y, X^{\prime}\right]\right)
\end{aligned}
$$

(3) Show that \mathfrak{g} is solvable if and only if $\mathfrak{g}_{\mathbb{C}}$ is solvable,

Solution. If $\mathfrak{h} \triangleleft \mathfrak{g}$ is an ideal, then $\mathfrak{h}_{\mathbb{C}}=: \mathfrak{h} \otimes_{\mathbb{R}} \mathbb{C} \triangleleft \mathfrak{g}_{\mathbb{C}}$ is an ideal. So any series of ideals

$$
\mathfrak{g} \triangleright \mathfrak{g}_{1} \triangleright \mathfrak{g}_{2} \triangleright \ldots \triangleright\{0\}
$$

corresponds to a series of ideals

$$
\mathfrak{g}_{\mathbb{C}} \triangleright\left(\mathfrak{g}_{1}\right)_{\mathbb{C}} \triangleright\left(\mathfrak{g}_{2}\right)_{\mathbb{C}} \triangleright \ldots \triangleright\{0\} .
$$

If $\mathfrak{g}_{i} / \mathfrak{g}_{i+1}$ is abelian, then $\left[X+\mathfrak{g}_{i+1}, Y+\mathfrak{g}_{i+1}\right]=[X, Y]+\mathfrak{g}_{i+1}=0 \in \mathfrak{g}_{i} / \mathfrak{g}_{i+1}$ for all $X, Y \in \mathfrak{g}_{i}$. For $X+i Y+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}, X^{\prime}+i Y^{\prime}+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}} \in\left(\mathfrak{g}_{i}\right)_{\mathbb{C}} /\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}$ we then have

$$
\begin{aligned}
{\left[X+i Y+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}, X^{\prime}+i Y^{\prime}+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}\right]_{\mathbb{C}} } & =\left[X+i Y, X^{\prime}+i Y^{\prime}\right]_{\mathbb{C}}+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}} \\
& =\left(\left[X, X^{\prime}\right]-\left[Y, Y^{\prime}\right]\right)+i\left(\left[X, Y^{\prime}\right]+\left[Y, X^{\prime}\right]\right)+\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}} \\
& =0 \in\left(\mathfrak{g}_{i}\right)_{\mathbb{C}}
\end{aligned}
$$

so if \mathfrak{g} is solvable, then $\mathfrak{g}_{\mathbb{C}}$ is solvable.
If we start with an ideal $\mathfrak{h}_{\mathbb{C}} \subseteq \mathfrak{g}_{\mathbb{C}}$ on the other hand, then $\mathfrak{h}:=\mathfrak{h}_{\mathbb{C}} \cap \mathfrak{g}$ is an ideal in \mathfrak{g}. In fact, since $\mathfrak{h}_{\mathbb{C}}$ is invariant under multiplication of \mathbb{C}, we have that $\mathfrak{h}_{\mathbb{C}}=\mathfrak{h}+i \mathfrak{h}$ as before. Then starting from a series of ideals

$$
\mathfrak{g}_{\mathbb{C}} \triangleright\left(\mathfrak{g}_{1}\right)_{\mathbb{C}} \triangleright\left(\mathfrak{g}_{2}\right)_{\mathbb{C}} \triangleright \ldots \triangleright\{0\}
$$

we obtain a series of ideals

$$
\mathfrak{g} \triangleright \mathfrak{g}_{1} \triangleright \mathfrak{g}_{2} \triangleright \ldots \triangleright\{0\}
$$

If $\left(\mathfrak{g}_{i}\right)_{\mathbb{C}} /\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}$ is abelian, it means that for every $X+i Y, X^{\prime}+i Y^{\prime} \in\left(\mathfrak{g}_{i}\right)_{\mathbb{C}}$ we have $\left[X+i Y, X^{\prime}+\right.$ $\left.i Y^{\prime}\right]_{\mathbb{C}}+\mathfrak{g}_{i+1}=0$. For $X, Y \in \mathfrak{g}_{i}$ we then have $\left[X+\mathfrak{g}_{i+1}, Y+\mathfrak{g}_{i+1}\right] \in\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}=\mathfrak{g}_{i+1}+i \mathfrak{g}_{i+1}$. But since $[\mathfrak{g}, \mathfrak{g}] \cap i \mathfrak{g}_{i+1}=0$, we have that $\left[X+\mathfrak{g}_{i+1}, Y+\mathfrak{g}_{i+1}\right]=0 \in \mathfrak{g}_{i} / \mathfrak{g}_{i+1}$. So if $\mathfrak{g}_{\mathbb{C}}$ is solvable, then so is \mathfrak{g}.
(4) Show that \mathfrak{g} is nilpotent if and only if $\mathfrak{g}_{\mathbb{C}}$ is nilpotent.

Solution. If \mathfrak{g} is nilpotent, then in the notation of $(3),\left[\mathfrak{g}, \mathfrak{g}_{i+1}\right] \subseteq \mathfrak{g}_{i}$. So if $X+i Y \in \mathfrak{g}_{\mathbb{C}}$ and $X^{\prime}+i Y^{\prime} \in\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}$, then

$$
\left[X+i Y, X^{\prime}+i Y^{\prime}\right]_{\mathbb{C}}=\left(\left[X, X^{\prime}\right]-\left[Y, Y^{\prime}\right]\right)+i\left(\left[X, Y^{\prime}\right]+\left[Y, X^{\prime}\right]\right) \in \mathfrak{g}_{i}+i \mathfrak{g}_{i}=\left(\mathfrak{g}_{i}\right)_{\mathbb{C}}
$$

as required.
If however $\mathfrak{g}_{\mathbb{C}}$ is nilpotent, then $\left[\mathfrak{g}_{\mathbb{C}},\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}\right] \subseteq\left(\mathfrak{g}_{i}\right)_{\mathbb{C}}$. Since $\mathfrak{g} \subseteq \mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{g}_{i+1} \subseteq\left(\mathfrak{g}_{i+1}\right)_{\mathbb{C}}$, we have that $\left[\mathfrak{g}, \mathfrak{g}_{i+1}\right] \subseteq\left(\mathfrak{g}_{i}\right)_{\mathbb{C}} \cap \mathfrak{g}=\mathfrak{g}_{i}$, so \mathfrak{g} is nilpotent.

