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Solutions to exercise Sheet 7

Exercise 1 (Killing form of sl(2,R)). Choose a basis of sl(2,R) to compute the Killing form
Ksl(2,R)(X,Y ) = 4tr(XY ).

Solution. Recall that g := sl(2,R) =
{
X ∈ R2×2 : trX = 0

}
. We choose a basis

X1 =

(
0 1
0 0

)
, X2 =

(
1 0
0 −1

)
, X1 =

(
0 0
1 0

)
which allows us to identify gl(g) ∼= gl(3,R). We want to compute the adjoint representation ad: g →
gl(g). We compute [(

b a
c −b

)
, X1

]
=

(
−c 2b
0 c

)
,[(

b a
c −b

)
, X2

]
=

(
0 −2a
2c 0

)
,[(

b a
c −b

)
, X3

]
=

(
a 0

−2b −a

)
,

so

ad

(
b a
c −b

)
=

2b −2a 0
−c 0 a
0 2c −2b

 ∈ gl(g).

The Killing form is defined as Kg(X,Y ) = tr(ad(X) ◦ ad(Y )) and on the basis we calculate

Kg

((
b a
c −b

)
, X1

)
= tr

2b −2a 0
−c 0 a
0 2c −2b

0 −2 0
0 0 1
0 0 0

 = tr

0 −4b −2a
0 2c 0
0 0 2c

 = 4c

Kg

((
b a
c −b

)
, X2

)
= tr

2b −2a 0
−c 0 a
0 2c −2b

2 0 0
0 0 0
0 0 −2

 = tr

 4b 0 0
−2c 0 −2a
0 0 4b

 = 8b

Kg

((
b a
c −b

)
, X3

)
= tr

2b −2a 0
−c 0 a
0 2c −2b

 0 0 0
−1 0 0
0 2 0

 = tr

 2a 0 0
0 2a 0

−2c −4b 0

 = 4a,

so writing the Killing form as a bilinear form in the basis we obtain

Kg(X,Y ) = X⊤

0 0 4
0 8 0
4 0 0

Y

for X,Y ∈ g ∼= R3. Actually a calculation then shows that also Kg(X,Y ) = 4tr(XY ).
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Exercise 2 (The Killing form is invariant under the adjoint action). Let G be a connected Lie
group and g its Lie algebra. Prove that for all X,Y ∈ g and g ∈ G

Kg(Ad(g)X,Ad(g)Y ) = Kg(X,Y ).

Hint: Prove that ad(Ad(g)X) = Ad(g) ad(X)Ad(g)−1.

Solution. Let X,Y, Z ∈ g and g ∈ G. Since Ad(g) is the derivative of the Lie group automorphism
cg, Ad is a Lie algebra automorphism, so Ad(g)[X,Y ] = [Ad(g)X,Ad(g)Y ]. Then ad(Ad(g)X)(Z) =
[Ad(g)X,Z] = Ad(g)[X,Ad(g)−1Z] = Ad(g) ad(Y )Ad(g)−1 proving the hint. Then

Kg(ad(Ad(g)X) ◦ ad(Ad(g)Y )) = tr
(
Ad(g) ad(X)Ad(g)−1 Ad(g ad(Y )Ad(g)−1)

)
= tr(ad(X) ◦ ad(Y )) = Kg(X,Y )

since the trace is invariant under conjugation.

Exercise 3 (Solvable Lie group without injective finite-dimensional representation). Consider the
three-dimensional Heisenberg group

H =


1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

 .

Note that the center of H is

Z(H) =


1 0 z
0 1 0
0 0 1

 : z ∈ R

 .

Let D < Z(H) be the following discrete subgroup

D := SL3(Z) ∩ Z(H) =


1 0 n
0 1 0
0 0 1

 : n ∈ Z

 .

Check that G := H/D is a connected, solvable Lie group and show that G does not admit a smooth,
injective homomorphism into GL(V ) for any finite-dimensional C-vector space V .

Hint: Observe that Z(H)/D ∼= S1 and consider its image under a potential representation and show
that its image can be conjugated into any small neighborhood of Id ∈ GL(n,C). Then use the
no-small-subgroups property.

Solution. Since H is connected, so is G, and since both H and D are solvable, so is G. Assume
π : G → GL(V ) is a smooth homomorphism for a finite-dimensional C-vector space V . We will
show that π(Z(H)/D) = Id, that is Z(H)/D < kerπ, so that π cannot be injective.

Let us observe first of all that, since D is discrete, then

Lie(H/D) = Lie(H) = h =


0 x z
0 0 y
0 0 0

 : x, y, z ∈ R

 ⊂ gl(3,R)
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and it is moreover solvable. Furthermore

Lie(Z(H)/D) = Lie(Z(H)) =


0 0 z
0 0 0
0 0 0

 = [h, h] .

By Lie’s theorem, if ρ := deπ, the image ρ(h) is upper triangular, so that [ρ(h), ρ(h)] is strictly
upper triangular. Thus

ρ(Lie(Z(H)/D)) = ρ([h, h]) = [ρ(h), ρ(h)] ⊂




0 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 0


 ,

from which it follows that

π(Z(H)/D) <




1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1


 =: L .

Observe that since Z(H)/D ≃ S1, then π(Z(H)/D) =: K is a compact subgroup of L. We will
show now that L cannot have non-trivial compact subgroups, which forces K = Id. In order to
show this, we will show that any compact subgroup can be conjugated into any small neighborhood
of Id ∈ GL(n,C), thus contradicting that L is a Lie group.

To this purpose, let g = diag(λ1, . . . , λn) ∈ GL(n,C) a diagonal matrix with entries 0 < λ1 < λ2 <
· · · < λn. Then, if i < j,cg


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1




ij

=


λ1

. . .

λn



1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1


λ−1

1

. . .

λ−1
n




=
λi

λj


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1


ij

,

so that cng


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1




ij

=

(
λi

λj

)n


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1


ij

(1)
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If


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1

 ∈ K its entries are bounded and, since λi/λj < 1, the right hand side of (1)

converges to Id and is hence eventually contained in any neighborhood of Id, no matter how small.

Exercise 4 (Complex Lie algebras). Let g be a real Lie algebra and gC = g⊗RC the complexification
of g as a vector space.

(1) Show that the bracket [·, ·] : g×g → g extends uniquely to a C-bilinear map [·, ·]C : gC×gC → gC
turning gC into a complex Lie algebra.

Solution. It is clear that gC is a C-vector space. The universal property of the tensor product
states that for every bilinear map h : g × C → V for R-vectorspace V , there exists a unique
linear map h̄ : gC → Z such that the following diagram commutes.

g× C V

gC

⊗

h

∃!h̄

Solution. For any X ∈ g and z ∈ C we have a bilinear map h : g × C → gC defined by
hX,z(Y,w) := [X,Y ] ⊗ zw. By the universal property there is a unique map h̄X,z : gC → gC.
Now consider the map h′ : g × C → End(gC) defined by h′(X, z) := h̄X,z and notice that it
is also bilinear and thus by the universal property has a unique extension h̄′ : gC → End(gC).
We define the bracket on generators as

[·, ·]C : gC × gC → gC

(X ⊗ z, Y ⊗ w) 7→ h̄′(X ⊗ z)(Y ⊗ w) = [X,Y ]⊗ zw

It is clear that the brackets are bilinear. Next, [X ⊗ z,X ⊗ z]C = [X,X] ⊗ z2 = 0 ⊗ z2 = 0
since [X,X] = 0. And finally, the Jacobi equality

[X ⊗ z, [Y ⊗ w,Z ⊗ v]C]C + [Y ⊗ w, [Z ⊗ v,X ⊗ z]C]C + [Z ⊗ v, [X ⊗ z, Y ⊗ w]C]C

=[X, [Y, Z]]⊗ zwv + [Y, [Z,X]]⊗ wvz + [Z, [X,Y ]]⊗ vzw

=([X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]])⊗ zwv = 0⊗ zvw = 0

holds on generators, so it holds always. This shows that gC is a complex Lie algebra.

(2) Show that the canonical injection g → gC, X 7→ X⊗1 is a homomorphism of real Lie algebras
and, if we identify g with its image in gC, we have that

gC = g+ ig.

Express the bracket of gC in this decomposition.
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Solution. Every complex Lie algebra can be viewed as a real Lie algebra by considering the C-
vectorspace as a R-vectorspace and taking the same brackets. The map f : g → gC, X 7→ X⊗1
is linear

f(λX + Y ) = (λX + Y )⊗ 1 = λ(X ⊗ 1) + Y ⊗ 1 = λf(X) + f(Y )

and preserves the brackets

f([X,Y ]) = [X,Y ]⊗ 1 = [X ⊗ 1, Y ⊗ 1]C = [f(X), f(Y )]C

and is hence a homomorphism of real Lie algebras. The map f is clearly an injection. Let

h : g+ ig → gC

defined on generators as h(X + iY ) = X ⊗ 1 + i(Y ⊗ 1) = X ⊗ 1 + Y ⊗ i. Clearly h is linear
and h−1 : gC → g+ ig defined on generators as h−1(X ⊗ z) := X ⊗x+ i(X ⊗ y) for z = x+ iy
is a linear map and they are inverses of each other. If now X + iY,X ′ + iY ′ ∈ g+ ig, then

[X + iY,X ′ + iY ′]C = [X ⊗ 1 + Y ⊗ i,X ′ ⊗ 1 + Y ′ ⊗ i]C

= [X ⊗ 1, X ′ ⊗ 1]C + [X ⊗ 1, Y ′ ⊗ i]C + [Y ⊗ 1, X ′ ⊗ 1]C + [Y ⊗ 1, Y ′ ⊗ i]C

= [X,X ′]⊗ 1 + [X,Y ′]⊗ i+ [Y,X ′]⊗ i+ [Y, Y ′]⊗ i2

= ([X,X ′]− [Y, Y ′])⊗ 1 + ([X,Y ′] + [Y,X ′])⊗ i

= ([X,X ′]− [Y, Y ′]) + i([X,Y ′] + [Y,X ′]).

(3) Show that g is solvable if and only if gC is solvable,

Solution. If h ◁ g is an ideal, then hC =: h⊗R C ◁ gC is an ideal. So any series of ideals

g ▷ g1 ▷ g2 ▷ . . . ▷ {0}

corresponds to a series of ideals

gC ▷ (g1)C ▷ (g2)C ▷ . . . ▷ {0}.

If gi/gi+1 is abelian, then [X+gi+1, Y +gi+1] = [X,Y ]+gi+1 = 0 ∈ gi/gi+1 for all X,Y ∈ gi.
For X + iY + (gi+1)C, X

′ + iY ′ + (gi+1)C ∈ (gi)C/(gi+1)C we then have

[X + iY + (gi+1)C, X
′ + iY ′ + (gi+1)C]C = [X + iY,X ′ + iY ′]C + (gi+1)C

= ([X,X ′]− [Y, Y ′]) + i([X,Y ′] + [Y,X ′]) + (gi+1)C

= 0 ∈ (gi)C,

so if g is solvable, then gC is solvable.

If we start with an ideal hC ⊆ gC on the other hand, then h := hC ∩ g is an ideal in g. In fact,
since hC is invariant under multiplication of C, we have that hC = h + ih as before. Then
starting from a series of ideals

gC ▷ (g1)C ▷ (g2)C ▷ . . . ▷ {0}

we obtain a series of ideals
g ▷ g1 ▷ g2 ▷ . . . ▷ {0}.
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If (gi)C/(gi+1)C is abelian, it means that for everyX+iY,X ′+iY ′ ∈ (gi)C we have [X+iY,X ′+
iY ′]C + gi+1 = 0. For X,Y ∈ gi we then have [X + gi+1, Y + gi+1] ∈ (gi+1)C = gi+1 + igi+1.
But since [g, g] ∩ igi+1 = 0, we have that [X + gi+1, Y + gi+1] = 0 ∈ gi/gi+1. So if gC is
solvable, then so is g.

(4) Show that g is nilpotent if and only if gC is nilpotent.

Solution. If g is nilpotent, then in the notation of (3), [g, gi+1] ⊆ gi. So if X + iY ∈ gC and
X ′ + iY ′ ∈ (gi+1)C, then

[X + iY,X ′ + iY ′]C = ([X,X ′]− [Y, Y ′]) + i([X,Y ′] + [Y,X ′]) ∈ gi + igi = (gi)C

as required.

If however gC is nilpotent, then [gC, (gi+1)C] ⊆ (gi)C. Since g ⊆ gC and gi+1 ⊆ (gi+1)C, we
have that [g, gi+1] ⊆ (gi)C ∩ g = gi, so g is nilpotent.
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