Introduction to Lie groups, diary of lectures

May 30, 2024

Important note: unless otherwise stated, the proofs of Theorems, Propositions, Lemmas,
and Corollaries are part of the program (if they were discussed in class).

o Lecture 1: 21/02

Brief historical introduction to Lie groups; Hilbert’s fifth problem; Hilbert-Smith
conjecture;

Structure of the course;

Definition of Topological group and elementary consequences;
Examples of topological groups; GL(n,R), Iso(X), Diff(M).

— Matrix groups: O(n,R), A, N, O(p,q), GL(n,C), U(n), SL(n,R), SO(n),
SO(p, q), SU(n).

o Lecture 2: 22/02

— Compactness and local compactness;
— Examples of compact and locally compact topological groups;

— O(n) is compact, O(p, q) for p,q > 1 is not;

Statement of Proposition 2.31 about general properties of topological groups.

Statement and proof of Lemma 2.32 (existence of “nice” neighborhoods of the
identity).
Proof of Prop. 2.31 (up to item 4).

o Lecture 3: 28/02

— Proof of item 5 of Prop. 2.31;
— The set of connected components and its group structure; examples.

— Existence of the universal covering for locally path-connected semi locally simply
connected top. spaces (statement only);

— the fundamental group of a locally path connected and semi locally simply
connected top group is abelian.

— Local homomorphisms; definition and examples.

— Theorem 2.42: extension of local homomorphisms from simply connected top.
groups. Statement and proof up to the end of Step 1.

o Lecture 4: 29/02 (Exercise class)

— Intuition for the compact-open topology.



On metric spaces the compact-open topology coincides with uniform convergence
on compact sets.

An example of a topological space X, such that Homeo(X) is not a topological
group. (using Cantor set)

If X compact, then Homeo(X) is a topological group.

o Lecture 5: 06/03

Completion of the proof of Prop. 2.31
Statement of Corollary 2.38

Introduction to Haar measures, statement of the existence and uniqueness
theorem for the Lebesgue measure

left group actions, continuous actions
endomorphism of C(X) induced by G-action;
Statement of Riesz representation theorem.
Induced action on linear functionals
Definition of left Haar functional and measure
Statement of Haar’s theorem (Thm. 2.42).

Relationship between left and right Haar measure, Lemma 2.44 and Corollary
2.45.

o-finiteness of Haar measure on locally compact Hausdorff connected groups
(Lemma 2.46).

o Lecture 6: 07/03

Statement and proof of Lemma 2.47 (general properties of Haar measures)
Proof of uniqueness part in Haar’s theorem

Examples of Haar measures: Lebesgue, Haar measure on R, counting measure
on discrete groups.

Mentioned existence of left Haar measures that are not right Haar measures.
Left Haar=right Haar does not imply abelian.

The group Aut(G); left action of Aut(G) on C.(G)

Statement and proof of Lemma 2.53; definition of modg.

Statement and proof of Lemma 2.54: modg : Aut(G) — R~ is a homomorphism.
Inner automorphisms, construction of modular function Ag : G — Rsg.
Modular function measures how non-right invariant a left invariant measure is.
Statement of Prop. 2.55

Definition of left/right uniformly continuous function (Def. 2.57)

Statement and proof of Lemma 2.57, any f € C.(G) is both left and right unif.
continuous.

o Lecture 7: 13/03

Corollary 2.58, statement and proof
Proof of Proposition 2.55



Definition of unimodular group and examples

Corollary 2.61, statement and proof

Prop. 2.62, statement and proof

Further examples of unimodular groups (abelian and compact, Ex. 2.63)
Introduction to homogeneous spaces.

Topological properties, Prop. 2.64, statement and proof.

Examples of homogeneous spaces, Ex. 2.65: S™ and GOy.

o Lecture 8: 14/03 (Exercise class)

Sheet 1, Exercise 4 about GL(n,R). One takaway is the method of showing that
something is closed by viewing it as an intersection of preimages of a closed set.

Sheet 1, Exercise 5 about Iso(X) being a compact group, when X is a compact
metric space.

Sheet 1, Exercise 7: topological coverings of topological groups are topological
groups.

Fundamental group of a topological group is abelian, so R? \ {p1, p2} does not
admit a topological group structure.

Examples of obtaining new groups from given ones. a) Quotienting by a normal

subgroup, b) taking covers, in particular universal covers.

Excursion about the appearance of the universal covering of SL(2,R) in the
Thurston geometrization conjecture as one of the model geometries.

o Lecture 9: 20/03

Remark 2.71: the stabilizer might depend on the point; if the group acts
transitively then stabilizers of different points are conjugated; the stabilizer of
a point might be not normal; G/G,; might not admit any topological group
structure; in general G/G, x G is not homeomorphic to G.

Proposition 2.73: compact subgroups of GL(n,R) are conjugated to subgroups
of O(n,R).

Definition 2.66 (Lattice).

Discussion about the definition of lattice, see Exercise 2.72.
Theorem 2.68, statement only.

Discussion on the well-posedness of Weil’s formula.

Proposition 2.70: group with lattice must be unimodular.

o Lecture 10: 21/03

More details about the proof of Prop 2.70

Introduction to the chapter about Lie groups;

Definition 3.1 (Lie group)

Definition 3.2 (Top. manifold), Definition 3.3 (smooth structure)

Remark 3.4 (Top manifolds are paracompact and have countably many connected
components)

Definition of smooth map between smooth manifolds



Examples 3.5, 3.6. 3.7 of Lie groups

Example 3.8 (Homeo(X) is not Lie in general) and Example 3.9 (Iso(X) might
or might not be Lie)

Definition 3.10 (Regular submanifold).

Theorem 3.11 (statement only). Exercise 3.12 (statement).
Theorem 3.13 (statement only)

First part of Example 3.14: SL(n,R) is a Lie group

o Lecture 11: 27/03

Second part of Example 3.14: O(n,R) is a Lie group

Definition 3.16 (tangent vectors)

Definition 3.18 (vector field and smooth vector field)

Discussion about the expression of vector fields in local coordinates
Definition 3.19 (derivation of an algebra)

Proposition 3.20 (Isomorphism between Vect®™ (M) and Der(C*(M)))
Remark 3.21: representing germ with global smooth function and vice versa
Remark: composition of derivations is not a derivation in general
Lemma 3.22

Definition 3.23: bracket of vector fields

Definition 3.24: bracket of endomorphisms.

o Lecture 12: 28/03 (Exercise class)

Sheet 2, Exercise 2c¢) Haar measure on GL(n,R)
Sheet 2, Exercise 2d) Haar measure on SL(n,R)
Recap lattices. Fundamental domains. Examples

The modular group SL(2,Z) as a lattice that is not cocompact, via its action
on the hyperbolic plane H = SL(2,R)/ SO(2).

o Lecture 13: 10/04

Properties of the bracket of endomorphisms

Remark 3.25: Jacobi identity is a substitute of associativity

Definition 3.26 (Lie algebra)

Example 3.27 (examples of Lie algebras)

Definition 3.28 (Lie algebra homomorphism)

Recap about definition of differential of a smooth map

Discussion about how to use a smooth map to “push-forward” vector fields
Definition 3.28 (p-related vector fields)

Lemma 3.30, algebraic characterization of p-related vector fields (no proof);
Proposition 3.31: brackets of ¢-related vector fields are ¢-related

Definition of push-forward of vector field with a diffeomorphism



Corollary 3.32: diffeomorphism induces Lie algebra isomorphism between spaces
of vector fields

Recap: useful identifications for tangent spaces of vector spaces and differentials
of linear maps

Definition 3.33: smooth action, induced left translation diffeomorphisms
Definition 3.34: G-invariant vector fields

Definition 3.35: Lie subalgebra, left invariant vector fields are a Lie subalgebra
Lemma 3.36

Definition 3.37: Lie algebra of a Lie group

Proposition 3.38, about the Lie algebra of GL(n,R)

o Lecture 14: 11/04

Proof of Proposition 3.38

Proposition 3.39: differential of Lie groups homomorphism is Lie algebra homo-
morphism

Corollary 3.40
Example 3.41 of Lie algebras of matrix groups
Example 3.43: Lie algebra of product of Lie groups

Broad discussion about the functor from Lie groups to Lie algebras and what
comes next.

Examples of non-isomorphic Lie groups with isomorphic Lie algebras
Discussion about Cartan’s theorem

The matrix exponential map, Proposition 3.44.

Sketch of proof of 1) and 2). Proof of 3).

o Lecture 15: 17/04

Proof of Proposition 3.44 part 4.
Definition 3.45, integral curve.

Theorem 3.46, existence and uniqueness of maximal integral curves of smooth
vector fields (no proof)

Definition 3.47: complete vector field

Proposition 3.48: group law for the flow map

Discussion about rate of change of vector fields on smooth manifolds
Definition 3.49: Lie derivative

Theorem 3.50: Lie derivative = Lie bracket (no proof)

Proposition 3.51: flows commute iff vector fields commute (no proof)
Proposition 3.52: flows of left invariant vector fields on Lie groups
Definition 3.53: one parameter group

Corollary 3.54: one parameter groups are all obtained via Prop. 3.52
Definition 3.56: exponential map

Corollary 3.57: statement only.



o Lecture 16: 18/04 (exercise Class)

Sheet 3, Ex 1 about lattices.

Sheet 3, Ex 2, Lie subgroups that are regular submanifolds are closed.
Sheet 3, Ex 3 about tangent space being isomorphic to R”.

various notions of tangent space, including one about paths through p.

S? is not a Lie group.

o Lecture 17: 24/04

Lemma 3.58: differential of multiplication.

Proof of Corollary 3.57: properties of the exponential.
Proposition 3.59: exponential and Lie group homomorphisms
Corollary 3.61: exponential as a preferred chart near to e.

Discussion about surjectivity of expg: connectedness is necessary, Cartan’s
theorem 3.62 (statement only), example of connected Lie group with non-
surjective exponential (Example 3.64).

Definition 3.65: abelian Lie algebra

Proposition 3.66: structure of abelian Lie groups

Introduction to the correspondence between Lie subalgebras and Lie subgroups
Definition 3.72: immersion, immersed vs embedded submanifolds

Example 3.73: immersions and immersed sumanifolds

Example 3.75: some Lie subgroups of 72

Definition 3.76: Lie subgroup.

o Lecture 18: 25/04

Theorem 3.77: Lie subalgebras-Lie subgroups correspondence
Remark 3.78: about the uniqueness part of Thm 3.77
Introductory discussion about distributions and integral submanifolds

Definition 3.80: distribution, involutive distribution, integral submanifold, com-
pletely integrable distribution

Example 3.81: distributions and integral submanifolds
Theorem 3.82: Frobenius

Remark 3.83: the 1 dimensional case

Definition 3.84: maximal integral submanifold

Theorem 3.85: esistence and uniqueness of maximal integral submanifolds
through each point for involutive distributions

Sketch of proof of Theorem 3.77
Theorem 3.87

Example 3.88: Lie algebra homomorphism not induced by Lie group homomor-
phism

Theorem 3.89: Li algebra homomorphism is induced by local Lie group homo-
morphism



Lemma 3.90 (no proof)

Proof of Theorem 3.89
Theorem 3.91: Ado’s theorem
Corollary 3.92

Corollary 3.93: statement only.

o Lecture 19: 02/05 (exercise Class)

Sheet 4, Ex 4 about the Lie algebra of the product of two Lie groups.

Sheet 4, Ex 2, Proving that the unitary group U(n) is a Lie group and calculation
of its Lie algebra.

Lie groups have no small subgroups.

o Lecture 20: 08/05

Cartan’s Theorem 3.94.

Brief discussion about idea of the proof, Lemma 3.95

Corollary 3.96: characterization of the Lie algebra of a closed subgroup
Corollary 3.97: Lie algebra of the kernel of homomorphism

Definition 3.98 (Ideals) and brief discussion

Definition 3.99: representations of Lie groups and Lie algebras

Remark 3.100: repr of Lie group induces repr. of Lie algebra
Definition of Stabilizer of vector and vector subspace

Proposition 3.101: Lie algebra of the stabilizer. Sketch of the proof of the first
part

Definition of adjoint representation

Fundamental relation for the adjoint representation
adjoint representation for GL(n,R).

Adjoint representation of a Lie algebra

Theorem 3.103: the induced representation of the adjoint repr. of a Lie group
on the Lie algebra is the adj. repr of the Lie algebra

Corollary 3.104: ideals and normal subgroups. Proof of 2).
Theorem 3.105: center of a Lie group is the kernel of the adj. repr. No proof.

o Lecture 21: 15/05

Definition 4.1: solvable group

Definition 4.2: derived series

Lemma 4.3

Lemma 4.4: characterization of solvable groups in terms of the derived series
Definition 4.5: solvability length

Lemma 4.6

Proposition 4.7: refinements for (connected) topological Hausdorff groups

Exercise 4.8: connectedness criterion



— Lemma 4.9

— Corollary 4.10: refinement for connected Lie groups; sketch of the proof
Example 4.11

— Statement of Theorem 4.12 (first Lie’s theorem)

Definition 4.13: weight

Statement of Theorem 4.15: existence of weight

— Lemma 4.16: invariance of weight space
o Lecture 22: 16/05

— Proof of Theorem 4.15

— Proof of Theorem 4.12

— Definition 4.17: solvable Lie algebra

— Example 4.18 of solvable Lie algebra

— Definition 4.19: derived series of Lie algebra

— Definition 4.20: Characteristic ideal

— Lemma 4.21

— Corollary 4.22

— Corollary 4.23, without proof

— Lemma 4.24: characterization of solvable Lie algebras in terms of derived series
— Definition 4.25: solvability length

— Example 4.26 of solvable Lie algebra

— Lemma 4.27 and Corollary 4.28, without proof

— Theorem 4.29: characterization of connected solvable Lie groups in terms of the
Lie algebra

— Theorem 4.30: Lie group structure and Lie algebra for quotients, no proof
— Proof of Theorem 4.29

— Definition 4.31: solvable Lie group

— Theorem 4.32, no proof.

o Lecture 23: 22/05

— Definition 4.33: nilpotent Lie algebra

Definition 4.34: central series of a Lie algebra

Proposition 4.35: equivalent characterizations of nilpotent Lie algebras. Sketch
of proof of 2) iff 3)

Definition 4.36: nilpotency length
— Example 4.37
Theorem 4.38

— Remark 4.39: nilpotent Lie algebras have non-trivial center

— Lemma 4.40: statement only

Remark 4.41: on the assumptions in Lemma 4.40 2)



— Proof of the implication from [g, g] being nilpotent to g being solvable.
— Example 4.42: about the strictly upper triangular form

— Theorem 4.43: Engel’s theorem, no proof

— Corollary 4.44: Lie algebra g nilpotent iff ad(g) strictly upper triangular
— Definition 4.45 and Remark 4.46 about commutator subgroups

— Definition 4.47: nilpotent group

— Definition 4.48: descending central series

— Lemma 4.49: equivalent characterization of nilpotent groups, no proof
— Theorem 4.50: equivalent characterizations of connected nilpotent Lie groups
— Definition 4.51: Killing form

— Proposition 4.52: invariance property of the Killing form

— Exercise 4.53: further invariance properties of the Killing form.
o Lecture 24: 23/05 (Exercise class)

— Sheet 5, Exercise 2, the classification of connected abelian Lie groups.

solvable groups are exactly those groups that are obtained by (repeated) exten-
sion from abelian groups

Recap of structure theory of nilpotent and solvable Lie groups. (Lie and Engel’s
theorem)

— Sheet 5, Exercise 4, (1) and (2): Continuous group homomorphisms are auto-
matically smooth.

— The smooth structure of the Lie group (R*, +) is never exotic.
o Lecture 25: 29/05

— Statement of Cartan’s criterion Theorem 4.54

— Lemma 4.55

— Proof of the implication from g solvable to KQ‘Q(UXQ(D =0

— Definition 4.56: (semi)simple Lie algebras and Lie groups

— Remark 4.57: simple abstract groups vs simple Lie groups

— Statement of Theorem 4.58

— Lemma 4.59: orthogonal of ideal is ideal

— Proof of the implication from g semisimple to Ky non-degenerate
— Statement of Theorem 4.60: criterion for semisimplicity

— Example 4.61: semisimple Lie algebras

— Proposition 4.62: existence and uniqueness of solvable radical
— Definition 4.63 of solvable radical

— Lemma 4.64, no proof

— Proof of Proposition 4.62
o Lecture 26: 30/05 (Exercise class)

— Recap Adjoint representations



Sheet 6, Exercise 2: For a connected Lie group the center is equal to the kernel
of the adjoint representation.

Example: Ad(SL(2,R)).
Repcap (semi)simple Lie algebras and groups.

Classification of simple complex Lie algebras.
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