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Chapter 1 Introduction

Lie groups are named after Sophus Lie, a Norwegian mathematician of the second half of the
nineteenth century who developed the theory of continuous transformation groups. His original
idea was to develop a theory of symmetries of differential equations parallel to the theory developed
by Galois for algebraic equations, with Lie groups being the continous analogue of permutation
groups in Galois theory. This point of view did not fulfill Lie’s expectations and went in unexpected
directions (see for example the theory of differential fields, D-modules, etc), but Lie groups came
to be an indispensable tool in many branches of mathematics as well as in theoretical physics.

The definition of a Lie group is simple, in that it is a differentiable manifold that is also a
group, such that the group operations are compatible with the manifold structure. One can hence
study Lie groups from a geometrical point of view or from an algebraic point of view. The starting
point of the algebraic point of view is the existence of an algebraic object, namely the Lie algebra
of the Lie group, that turns out to have the geometric interpretation as the tangent space at the
identity of the Lie group. There is also a somewhat different approach, much more elementary, but
also more restrictive, in which one considers only linear Lie groups, that is (closed) subgroups of
GL(n,R) and one develops the whole theory via elementary methods. While this is appropriate
for example in case one is teaching a course to students with limited mathematical background,
there is the problem that, although any Lie group can be locally realized as a linear Lie group, there
are important Lie groups that are not (globally) linear. Our approach will be the more algebraic
one. In fact, as such we will start by considering Lie groups just as topological groups, that is
topological spaces that are also groups, such that the group operations are compatible with the
topological structure. We will see how far one can go for topological groups, and we will see that
there are some miraculous facts that arise from the interplay of these two structures.



Chapter 2 Topological Groups

1. Check Exercise numbering

2.1 Definitions and Examples

Definition 2.1. Topological group

♣

A topological group G is a group endowed with a topology with respect to which the group
operations

G×G −→ G

(g, h) 7−→ gh

and
G −→ G

g 7−→ g−1

are continuous, where G×G is endowed with the product topology.

Remark The following “regularity" properties follow simply from the definition:

The inversion g 7→ g−1 is a continuous bijection. Since its inverse g−1 7→ (g−1)−1 is also
continuous, then it is a homeomorphism.
The left translation

Lg : G→ G

x 7→ gx

and the right translation

Rg : G→ G

x 7→ xg

are continuous and bijective. Since (Lg)−1 = Lg−1 and (Rg)−1 = Rg−1 are also continuous,
Lg and Rg are homeomorphisms. If U 3 e is a neighborhood of the identity (that is a set in
G containing e and an open set Ue 3 e), then LgU is a neighborhood of g homeomorphic to
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U . Hence topological groups “look everywhere the same”.
IfG1, G2 are topological groups and ρ : G1 → G2 is a homomorphism, then ρ is continuous
if and only if it is continuous at one point.

Remark. Before we proceed to give concrete examples of topological groups, we remark that
there are simple operations that preserve the class of topological groups.

Any subgroup of a topological group is a topological group (see also Proposition 2.1.3.).
Products of topological groups are topological groups with the product topology.
Quotients of topological groups are also topological groups with the quotient topology.
The semidirect product of topological groups is a topological group. We recall in fact that
if H,N are topological groups and η : H → Aut(N) is a homomorphism such that

H ×N → N

(h, n) 7→ η(h)n

is continuous, the semidirect product H nη N is the setwise Cartesian product H ×N with
the product

(h1, n1)(h2, n2) = (h1h2, n1η(h1)n2)

for all h1, h2 ∈ H and n1, n2 ∈ N , and it is a topological group with the product topology.
Notice that there are other characterizations of a semidirect product. We recall these here
since we will be using it in the sequel.

Lemma 2.1

♥

LetG be a topological group,H < G a closed subgroup andN ⊴ G a closed normal
subgroup. The following are equivalent:

1. There exists a homomorphism η : H → Aut(N) such that G = H nη N ;
2. G is a group extension of N by H , that is there exists a short exact sequence

{e} //N //G //H //{e} .

that splits, that is the composition p◦i : H → G/N of the embedding i : H ↪→ G

and the natural projection p : G → G/N is an isomorphism of topological
groups.

Example 2.1 Any group with the discrete topology is a topological group. In this case any subset
is open and any map to any other topological group is continuous.

Example 2.2 The vector space (Rn,+) with the componentwise addition is a commutative
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topological group in the Euclidean topology.

Example 2.3 The non-zero real numbers and the non-zero complex numbers, (R∗, ·) and (C∗, ·),
are commutative topological groups with the topology induced by the Euclidean topology.

Example 2.4 Let us denote by Rn×n the vector space of n×nmatrices with real coefficients and
let us define

GL(n,R) := {A ∈ Rn×n : detA 6= 0} .

Then GL(n,R) is an open set in Rn×n and it inherits from Rn×n the Euclidean topology. With this
topology GL(n,R) is a topological group. In fact the topology on Rn×n, and hence on GL(n,R)
is such that if (Ak)k∈N ⊂ GL(n,R) is a sequence, then

Ak → A if and only if (Ak)ij → Aij

for all 1 ≤ i, j ≤ n. Since if A,B ∈ GL(n,R)

(AB)ij =

n∑
k=1

AikBkj ,

this means that the multiplication is continuous. Since

(A−1)ij =
detMji

detA
,

where Mji is the (j, i)-minor matrix obtained by removing the i-th row and the j-th column and
by multiplying by (−1)i+j , then the inversion is also continuous.

Example 2.5 In the Example 2.4 we used that R is a topological field, that is the sum, the
multiplication and the inversion are continuous, and as a consequence, the topology on Rn×n

induces a topology on GL(n,R). Likewise, if F is any topological field, then GL(n,F) is a
topological group. Examples of topological fields are R,C,Qp and finite fields. Here Qp is the
field of p-adic integers, which can be defined as the field of fractions of the ring of p-adic integers
Zp defined in Example 2.10.

Example 2.6 Let X be a compact Hausdorff space. Then

Homeo(X) := {f : X → X : f is a homeomorphism}

is a topological group with the compact-open topology (see Definition A.5).

IfX is only locally compact but not compact, thenHomeo(X) need not be a topological group.
If howeverX is locally compact but also locally connected, thenHomeo(X) is a topological group.
This includes for example all manifolds. Likewise, if X is a proper metric space (that is a metric
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space in which closed balls of finite radius are compact), then HomeoX is a topological group.

Example 2.7 Let (X, d) be a compact metric space and let

Iso(X) := {f ∈ Homeo(X) : d(f(x), f(y)) = d(x, y) for all x, y ∈ X} .

Then Iso(X) ⊂ Homeo(X) is a (closed) subgroup and hence a topological group (Exercise 1.).

Example 2.8 We showed in Example 2.4 that GL(n,R) is a topological group when it inherits
the Euclidean topology as a subspace of Rn×n. We show now that GL(n,R) is a topological
group also with respect to the compact-open topology (and in fact the two topologies coincide, see
Exercise 2.). In fact, since GL(n,R) < Homeo(Rn) and Rn is a proper metric space, then the
compact-open topology on GL(n,R) < Homeo(Rn) is the topology of the uniform convergence
on compact sets. If (Ak)k∈N ⊂ GL(n,R), and Ak → A uniformly on compact set, then A is
linear, so that GL(n,R) is a (closed) subgroup of Homeo(Rn) and is hence a topological group.
Notice that for the limit of a sequence of linear functions to be linear, it is actually enough that the
sequence converges pointwise.

Example 2.9 Let M be a smooth manifold. Then

Diffr(M) := {f ∈ Homeo(M) : f, f−1 are continuous and differentiable r times}

is a subgroup of Homeo(M), hence a topological group, which however is not closed in the
compact-open topology. We can consider however the Cr-topology, that is the topology according
to which (fn)n∈N

Cr

−→ f if in any local chart ψ : U → Rn, U ⊂ M , the sequence (fn ◦ ψ−1)n≥1

and all its partial derivatives up to order r converge uniformly on compact sets to the corresponding
derivatives of f ◦ ψ−1. With this topology Diffr(M) is a topological group that is complete in a
natural sense.

Example 2.10 Let Λ be a partially ordered set and let (Gλ)λ∈Λ be a family of groups such that
for every λ1, λ2 ∈ Λ with λ1 ≤ λ2 there exists a homomorphism

Gλ2
ρλ2,λ1 //Gλ1

satisfying the following properties:

1. for any λ ∈ Λ, ρλ,λ = Id|Gλ
;

2. for any λ1, λ2 ∈ Λ, there exists λ3 ∈ Λ with λ1 ≤ λ3 ≤ λ2;
3. ρλ3,λ1 = ρλ2,λ1 ◦ ρλ3,λ2 for all λ1 ≤ λ2 ≤ λ3.

Then the inverse limitG of the projective system ((Gλ)λ∈Λ, ρλ2,λ1) is defined as the unique smallest
topological groupG such that for all λ ∈ Λ there exists a continuous homomorphism ρλ : G→ Gλ
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with the property that the diagram

G
ρλ2 //

ρλ1   A
AA

AA
AA

A Gλ2

ρλ2,λ1||zz
zz
zz
zz

Gλ1

(2.1)

commutes, ρλ1 = ρλ2,λ1 ◦ ρλ2 . One can verify that G can be identified with

lim←−Gλ :=

{
(xλ)λ∈Λ ∈

∏
λ∈Λ

Gλ : ρλ2,λ1(xλ2) = xλ1

}
.

Points in lim←−Gλ are said to be compatible. If the (Gλ)λ∈Λ are topological groups, so is
∏
λ∈ΛGλ

with the product topology and, since lim←−Gλ is a (closed) subgroup of
∏
λ∈ΛGλ, it is a topological

group as well with the induced topology.

Of course if the (Gλ)λ∈Λ are compact then by Tychonoff theorem also lim←−Gλ is compact.
Moreover, if the (Gλ)λ∈Λ are discrete, then lim←−Gλ is totally disconnected, that is the connected
sets are the points. In fact, let C ⊂ G be a connected set. Since ρλ : G→ Gλ is continuous, then
ρλ(C) is connected and hence a point, say xλ ∈ Gλ. By the commutativity of the diagram (2.1)
the sequence (xλ)λ∈Λ must be compatible and unique, so that C is the singleton {(xλ)λ∈Λ}.

If the groups in the projective system (Gλ)λ∈Λ are finite, the resulting inverse limit is called
profinite. It follows from the previous observation that profinite groups are compact and totally
disconnected. An important example is the group of p-adic integers Zp, which is a profinite group
under addition. In fact Zp is the inverse limit of the projective system

((Z/pnZ), (ρn,m : Z/pnZ→ Z/pmZ)n≥m) ,

where ρn,m is the natural reduction mod pm homomorphism. One can check that the topology
on Zp is the same as the topology arising from the p-adic valuation on Zp and with this topology Zp
is a topological ring. By the characteristic property of Zp there are maps ρn : Zp → Z/pnZ which
hare continuous ring homomorphisms. The kernel of ρn is the ideal pnZp which is open since
Z/pnZ is discrete. Since

⋂
n≥1 p

nZp = {0}), the sequence {pnZp : n ≥ p} is a fundamental
system of neighborhoods of 0. One shows then:

1. x ∈ Zp is invertible if and only if x /∈ pZp;
2. if U = Z×

p is the group of invertible elements, then every x ∈ Zp r {0} can be written
uniquely as x = pnu, with n ≥ 0 and u ∈ U .

With this at hand, one shows that Zp is an integral domain; its field of fractions is the field QP of
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p-adic numbers and equals Zp
[
1
p

]
. It is a locally compact non-discrete Hausdorff field. In fact

any such field of characteristic zero is isomorphic to R, C or a finite extension of Qp. For more
details see [9].

Example 2.11 We consider now three subgroups of GL(n,R) that will turn out to play an
extremely important role.

1. Let

Adet :=



λ1

. . .

λn

 ∈ GL(n,R) : λi 6= 0, for 1 ≤ i ≤ n

 .

Then Adet is an Abelian topological group as it is homomorphic and homeomorphic to
(R∗)n.

2. Let

N :=



1 ∗

. . .

0 1

 ∈ GL(n,R)

 .

be the group of upper triangular matrices with all 1s on the diagonal. Then N is a (closed)
subgroup of GL(n,R) and is hence a topological group. However, in this case N is
homeomorphic to R

n(n−1)
2 as a topological space, but not as a group, as for example N is

not Abelian, unless n ≤ 2.
3. Let

K := O(Rn, 〈 · , · 〉) = {X ∈ GL(n,R) : 〈Xv,Xw〉 = 〈v, w〉 for all v, w ∈ Rn}

= {X ∈ GL(n,R) : ‖Xv‖ = ‖v‖ for all v ∈ Rn}

=
{
X ∈ GL(n,R) : tXX = Idn

}
be the orthogonal group of the usual Euclidean inner product 〈 · , · 〉 or of the usual Euclidean
norm ‖ · ‖ on Rn. This is a topological group as it is a (closed) subgroup of GL(n,R). The
standard notation for this group is

O(n,R) := O(Rn, 〈 · , · 〉) .

Example 2.12 We may also consider inner products on a vector space with respect to which
vectors might have negative length. Let V be a real vector space and let B : V × V → R be a
non-degenerate symmetric bilinear form on V , that is:

1. (Non-degeneracy) Given x ∈ V there exists y ∈ V such that B(x, y) 6= 0;
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2. (Symmetry) B(v, w) = B(w, v) for all v, w ∈ V , and
3. (Bilinearity) B(α1v1 + α2v2, w) = α1B(v1, w) + α2B(v2, w) for all v1, v1, w ∈ V and all
α1, α2 ∈ R.

Incidentally, given such a non-degenerate symmetric bilinear form is equivalent to choosing a
self-adjoint isomorphism λ : V → V ∗ of V with its dual V ∗ given by B(v, w) = λ(v)w. If Q is
the quadratic form associated to B, Q(v) := B(v, v), the orthogonal group of (V,B) or of (V,Q)

is defined as
O(V,B) = {A ∈ GL(V ) : B(Av,Aw) = B(v, w), for all v, w ∈ V }

= {A ∈ GL(V ) : Q(Av) = Q(v), for all v ∈ V } .
This is a topological group as it is a (closed) subgroup of GL(V ).

Recall that one can always choose a basis of V so that B can be written as

Bp(v, w) = −
p∑
j=1

vjwj +

n∑
j=p+1

vjwj (2.2)

for some fixed p. Then B is positive definite if and only if p = 0. If V = Rn and Bp is as in (2.2),
then it is customary to use the notation

O(p, q) := O(V,Bp) .

Notice that in the above discussion it is essential that V is a real vector space, since instead
over the complex numbers all O(V,B) are isomorphic once the dimension of V is fixed. In fact
we can perform a change of basis

(e1, . . . , ep, ep+1, . . . , en) 7→ (ıe1, . . . , ıep, ep+1, . . . , en)

so that in the new basis the bilinear form reads

B(v, w) =
n∑
j=1

vjwj . (2.3)

The orthogonal group of the symmetric bilinear form in (2.3) is denoted by

O(n,C) = O(V,B) ,

where now V is a complex n-dimensional vector space.

Example 2.13 Let V be a complex vector space and h : V × V → C a Hermitian inner product,
that is a positive definite Hermitian complex valued form that is linear in the first variable and
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antilinear in the second. The unitary group U(V, h) is defined as

U(V, h) :={X ∈ GL(V ) : h(Xv,Xw) = h(v, w) for all v, w ∈ V }

={X ∈ GL(V ) : X∗ = X−1} ,
where X∗ denotes the adjoint with respect to h. Notice that if X ∈ U(V, h), then | detX| = 1. If
h : Cn × Cn → C is the standard Hermitian inner product

h(x, y) :=

n∑
j=1

xjyj ,

then we use the notation

U(n) := U(Cn, h) .

Example 2.14 Let k be a topological field. The special linear group defined as

SL(n, k) := {X ∈ GL(n, k) : detX = 1}

is a topological group as a subgroup of GL(n, k). We can thus define subgroups of all of the above
linear groups by taking the intersection with SL(n, k) with the appropriate field. So for example

SO(n,R) := SL(n,R) ∩O(n,R)

SO(p, q) := SL(p+ q,R) ∩O(p, q)

SO(n,C) := SL(n,C) ∩O(n,C)

SU(n) := SL(n,C) ∩U(n) .

Notice that the subgroup N in Example 2.11 is in SL(n,R). Moreover A := Adet ∩ SL(n,R) is
also an important non-trivial subgroup of SL(n,R).

Example 2.15 Let H be a complex separable Hilbert space (see Definition A.8). The space of
unitary operators ofH

U(H) :={U : H → H : U−1 = U∗}

={U : H → H : UU∗ = U∗U = Id}
is a topological group with the strong operator topology.

2.2 Compactness and Local Compactness

The Examples 2.1, 2.2 and 2.3 are obviously locally compact. Likewise the Examples 2.4,
2.11 and 2.12 are also locally compact because of Lemma A.2, as well as Example 2.5 if F is
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locally compact.

Example 2.16 (See Example 2.6) The homeomorphism group of a topological space X is not
necessarily locally compact, even if X is compact (see Exercise 3.).

Example 2.17 (See Example 2.8) Contrary to the homeomorphism group, the isometry group of
a metric space X is as “good” as the space itself. In other words, if X is compact, then Iso(X) is
compact and if X is locally compact, then Iso(X) is locally compact (Exercise 4.). So Iso(X) is
always much much smaller than Homeo(X).

The proof of the first assertion follows immediately from Ascoli–Arzelà’s Theorem (see
Theorem A.1). In fact, from the chain of inclusions

Iso(X) ⊂ Homeo(X) ⊂ C(X,X)

it follows that Iso(X) is compact if it is an equicontinuous totally bounded family, which is obvious
since it consists of isometries and X is compact.

Example 2.18 (See Example 2.11.3. and 2.12) We mentioned already that O(p, q) is locally
compact since it is a (closed) subgroup of GL(p+q,R). The question now is whether it is compact
and we will show that O(p, q) is compact if and only if p = 0 or q = 0.

1. Let p = 0 and let O(0, n) = O(n,R). Let us write A ∈ O(n,R) as A = ((c1), . . . , (cn)),
where cj = Aej for 1 ≤ j ≤ n. Thus {c1, . . . , cn} is an orthonormal basis in Rn. In
particular ‖cj‖2 = 1, so that |Aij | ≤ 1. Thus O(n,R) is bounded in Rn×n. On the other
hand, by definition

O(n,R) = {A ∈ Rn×n : 〈Av,Aw〉 = 〈v, w〉 = for all v, w ∈ Rn} =−1 (Id) ,

where f : Mn×n →Mn×m is defined as f(A) := AtA, so that O(n,R) is closed and hence
compact by the Heine–Borel Theorem.

2. Let us assume now that pq 6= 0 and we will show that in this case O(p, q) is not compact
since it is not bounded. In fact we can write for n = p+ q

O(p, q) := {A ∈ Rn×n : Qp(Av) = Qp(v) for all v ∈ R} ,

where

Qp(v) = −
p∑
j=1

v2j +
n∑

j=p+1

v2j .
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Consider for example the case p = 1, so that

Q1(v) = −v21 +
n∑
j=2

v2j

with respect to the basis (e1, . . . , en). Consider now the change of basis

e′1 :=e2 − e1

e′2 :=e2 + e1

e′j :=ej for 3 ≤ j ≤ n ,
and denote by V the vector space Rn with this new basis. On V the quadratic form will now
take the form

Q′
1(v

′) = −(v′1 − v′2)2 + (v′1 + v′2)
2 +

n∑
j=3

v′j
2
.

The matrix

As :=


s 0 t0n−2

0 1
s

t0n−2

0n−2 0n−2 Idn−2

 (2.4)

clearly satisfies

Q′
1(Asv) = Q′

1(v)

so that As ∈ O(V,Q′
1). Moreover one can show that the subgroup {As : s > 0} is

closed, which shows that O(V,Q′
1) is not compact. The general argument for n > p ≥ 1 is

analogous.

Example 2.19 The special linear group SL(n,R) is a locally compact group since it is closed in
GL(n,R), but it is not compact since the matrix At in (2.4) belongs to SL(n,R) as well.

Example 2.20 (See Example 2.10) Profinite groups are compact.

Example 2.21

1. The one-dimensional torus

T := {z ∈ C : |z| = 1}

with the usual multiplication is a compact Abelian topological group isomorphic to

SO(2,R) =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ [0, 2π)

}
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via the isomorphism

SO(2,R) −→ T

X 7−→ eıθ .

2. The n-dimensional torus Tn is also a compact Abelian topological group.

Example 2.22 We emphasise that U(n) 6= O(n,C). In fact:

U(n) preserves the usual Hermitian inner product on Cn, Thus

U(n) = {X ∈ GL(n,C) : ∗XX = Idn} ,

where ∗X = tX and it is compact.
O(n,C) preserves a non-degenerate symmetric bilinear form on Cn so that

O(n,C) := {X ∈ GL(n,C) : tXX = Idn}

and O(n,C) is not compact for n ≥ 2. The argument to see this is exactly the same as for
O(p, q).

Example 2.23 Let B : C2n × C2n → C be the skew-symmetric bilinear form on C2n given
by B(x, y) =

∑
1≤p≤n

xpyn+p − xn+pyp, where x = (x1, . . . , x2n) and y = (y1, . . . , y2n). The

symplectic group Sp(2n,C) is defined as the subgroup of GL(2n,C) of matrices that leave B

invariant. If F =

(
0 In

−In 0

)
, then

Sp(2n,C) := {A ∈ GL(2n,C) : B(x, y) = B(Ax,Ay) for all x, y ∈ C2n}

= {A ∈ GL(2n,C) : tAFA = F} .
Related to Sp(2n,C) there are also the following groups

Sp(2n) := Sp(2n,C) ∩U(2n) ,

which is compact, and

Sp(2n,R) := Sp(2n,C) ∩GL(2n,R) = {A ∈ GL(2n,R) : tAFA = F}.

Example 2.24 We get back to the space of unitary operators of a complex separable Hilbert space
H.

Lemma 2.2
If H is a complex separable Hilbert space, then the space of continuous unitary operators
U(H) is a topological group that is locally compact if and only if dimH < ∞, in which
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♥case it is compact.

Proof (⇐) Let us assume that dimH = n <∞. Then

U(H) = U(n) ,

which is compact.

(⇒) We prove the assertion by contradiction. A basis neighborhood of Id ∈ U(H) in the
strong operator topology is of the form

UF,ϵ := {T ∈ U(H) : ‖Tu− u‖ < ε for all u ∈ F} ,

where F ⊂ H is a finite set and ε > 0. If U(H) is locally compact, the neighborhood UF,ϵ is
contained in a compact set C. We will show that the assumption that H is infinite dimensional
leads to a contradiction.

We writeH = 〈F 〉 ⊕ 〈F 〉⊥. Then an obvious verification shows that the subgroup(
Id 0

0 U(〈F 〉⊥)

)
⊂ UF,ϵ ,

since if T ∈

(
Id 0

0 U(〈F 〉⊥)

)
, then Tu = u for all u ∈ F . But then

U(〈F 〉⊥) '

(
Id 0

0 U(〈F 〉⊥)

)
⊂ UF,ϵ ,

that is also U(〈F 〉⊥) must be contained in a compact set and hence be compact. But if F ⊂ H is
finite and H is infinite dimensional, then 〈F 〉⊥ must be infinite dimensional. We show now that
the unitary group of an infinite dimensional Hilbert space cannot be compact.

Claim 2.2.1. IfH is an infinite dimensional separable Hilbert space, thenU(H) cannot be compact.

By contradiction let us assume that U(H) is compact in the strong operator topology. If we
can find a sequence (Tn)n∈N ⊂ U(H) of unitary operators converging to zero in the weak operator
topology, that is such that 〈Tnu, v〉 → 0 for all u, v ∈ H, then by our assumption we could find
subsequence (Tnk

)k∈N that converges in the strong operator topology to a unitary operator T . On
the other hand (Tnk

)k∈N converges weakly to zero, which implies that T = 0, a contradiction.

Thus, in order to complete the proof, we need to show that if H is infinite dimensional
and separable we can find a sequence of unitary operators (Tn)n∈N that converges to zero in
the weak operator topology. Let H = L2(R) and let T ∈ L2(R) be the translation by one,
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Tf(x) := f(x − 1). Then if f, g ∈ L2(R), 〈Tnf, g〉 → 0. In fact, the space of C∞ compactly
supported functions on R is dense in L2(R) and 〈Tnf, g〉 is very small as soon as n is large enough
that the supports of Tnf and of g are almost disjoint.

2.3 General Facts about Topological Groups

The simple fact of requiring that the group operations are continuous has a plethora of
interesting consequences, of which we illustrate here the most important ones.

Definition 2.2. Symmetric neighborhood

♣

A neighborhood U of the identity e ∈ G in a topological group is symmetric if g−1 ∈ U
whenever g ∈ U .

Proposition 2.1
Let G be a topological group. Then

1. If V is a neighborhood of the identity e ∈ G, there exists a symmetric neighborhood
U of the identity contained in V .

2. If V is a neighborhood of the identity e ∈ G, there exists a symmetric neighborhood
U of the identity such that U2 = U−1U ⊂ V .

3. If H < G is a subgroup, then its closure H is also a subgroup
4. If G is connected any discrete normal subgroup is central.
5. The connected component G◦ of the identity is a closed normal subgroup.
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♠

6. Every open subgroup is closed.
7. IfG is connected andU is any neighborhood of the identity e ∈ G, thenG = ∪∞n=1U

n.

Note that the converse of Proposition 2.1.6. is not true. For example R < R2 is a closed
subgroup that is not open.

Proof (1) is immediate by taking U := V ∩ V −1 and (2) is also immediate from the continuity
of the multiplication and from (1).

(3) Since the multiplication and the inversion are continuous, then

m(H ×H) = m(H ×H) ⊆ m(H ×H) = H

i(H) ⊆ H .

(4) Let D be a discrete normal subgroup and, for h ∈ D fixed, let us define the continuous map
γh : G → D by γh(g) := ghg−1. We want to show that γh(g) ≡ h and this will follow from the
connectedness of G and the discreteness of D. In fact, since G is connected, γh is continuous and
D is discrete, then image(γh) must be one point. Since γh(e) = ehe−1 = h, then γh(g) = h for
all g ∈ G. Thus ghg−1 = h for all g ∈ G, so that gh = hg for all g ∈ G, that is D is central.

(5) Let G◦ be the connected component of the identity e ∈ G. Since the multiplication
m : G◦ × G◦ → G is continuous and G◦ × G◦ is connected, then m(G◦ × G◦) is connected.
But e ∈ m(G◦ × G◦), so that m(G◦ × G◦) ⊂ G◦, that is G◦ is closed under multiplication.
Likewise the image of i : G◦ → G◦ is connected and contains e, so that i(G◦) ⊂ G◦. Thus G◦ is
a group.

To see thatG◦ is closed, observe thatG◦ ⊂ G◦. ButG◦ is connected and contains the identity
in G so that G◦ ⊂ G◦. Thus G◦ = G◦.

If g ∈ G, consider now the continuous map defined by the conjugation cg : G
◦ → G,

cg(h) = ghg−1. SinceG◦ is connected, cg(G◦) is connected, hence contained inG◦, which means
that G◦ is normal.

(6) Let H < G be an open subgroup. If Lg : G → G is the left multiplication by g ∈ G, by
continuity of the multiplication LgH is also open for all g ∈ G. Thus the union G rH = ∪gH
over all g ∈ GrH is open and hence H is closed.

(7) Obviously ∪∞n=1U
n ⊆ G. Let V ⊂ U be an open symmetric neighborhood of e ∈ G such that

V 2 = V −1V ⊂ U . ThenH := ∪∞n=1V
n ⊆ ∪∞n=1U

n ⊆ G is an open subgroup ofG, hence closed
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by (6). Since G is connected, we have equality.

2.4 Local homomorphisms

The content of this section will be heavily used in the correspondence between Lie groups and
Lie algebras presented in § ?? and it is of independent interest.

Definition 2.3. Local homomorphism

♣

Let G,H be topological groups.
1. A local homomorphism is a continuous map ϕ : U → H , where U is a neighborhood

of e ∈ G, such that whenever x, y, xy ∈ U

ϕ(xy) = ϕ(x)ϕ(y).

2. A local homomorphism ϕ : U → H is a local isomorphism if it is bijective onto ϕ(U)

and ϕ−1 : ϕ(U)→ G is continuous.

A natural question to ask is when a local homomorphism ϕ of a topological group can be
extended to a homomorphism.

Theorem 2.1. Extension of local homomorphisms

♥

IfG is a simply connected topological group, then any local homomorphism extends uniquely
to a homomorphism G→ H .

Recall that a topological space X is simply connected if it is path-connected and π1(X) is
trivial. Path-connectedness implies connectedness but the converse is not true in general. For
example, let X := [0, 1]× {0} ∪ {{ 1n} × [0, 1] : n ∈ N} ∪ {{0} × [0, 1]r {0} × (0, 1)}.
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Then X is connected but not path-connected.

However, if a space is connected and locally path-connected, then it is path-connected. For
example connected manifolds, and in particular connected Lie groups, are automatically path-
connected, since they are locally homeomorphic to Rn, which is path-connected.

Proof We give only the sketch of the proof. For the complete argument see [4]. Let U ⊂ G be a
neighborhood of e ∈ G and ϕ : U → H the local homomorphism that we want to extend. We will
prove the theorem in three steps:

1. We use that G is path-connected to define ϕ on all of G.
2. We use that π1(G) = 0 to show that the extension is well-defined.
3. We show that ϕ is the unique continuous extension of ϕ|U .

1. Since G is path-connected, if g ∈ G, let α : [0, 1] → G be a path from e to g. Choose
a partition of [0, 1] into subintervals Ik := [tk−1, tk], for k = 1, . . . , n, with the property that if
s, t ∈ Ik, then

α(s)−1α(t) ∈ U .

We call such a partition good. We impose a further condition that will be needed only in Step 2.,
but that we may as well impose from the beginning. We choose W be a neighborhood of e ∈ G
contained in U such that W =W−1 and W 2 ⊂ U and α ⊂ ∪nk=0α(tk)W . Such a partition exists
since [0, 1] is compact and the group operations are continuous, so that there exists a δ > 0 such
that α(s)−1α(t) ∈ U whenever |s − t| < δ. Set xk := α(tk) ∈ α, with x0 = α(0) = e and
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g = α(tn) = xn. Then

g = (x−1
0 x1)(x

−1
1 x2) . . . (x

−1
n−1xn) ,

with x−1
k−1xk ∈ U .

Then we define

ϕα(g) := ϕ(x−1
0 x1)ϕ(x

−1
1 x2) . . . ϕ(x

−1
n−1xn) ,

To show that ϕα(g) is independent of the partition, notice that adding points to the partition
gives a partition that still has the above defining properties. Let us hence take t ∈ Ik and write
[tk−1, tk] = [tk−1, t] ∪ [t, tk]. Since t ∈ Ik, then α(tk−1)

−1α(t) ∈ U , α(t)−1α(tk) ∈ U and

α(tk−1)
−1α(tk) = α(tk−1)

−1α(t)α(t)−1α(tk) ∈ U ,

so that

ϕα(α(tk−1)
−1α(tk)) = ϕ(α(tk−1)

−1α(t))ϕ(α(t)−1α(tk)) .

2. We show now that ϕα(g) is in fact independent of α. Since π1(G) = 0 we can choose a
homotopy H : [0, 1]× [0, 1] → G with H(0, t) = α0(t) and H(1, t) = α1(t) and set ϕs := ϕαs ,
where αs : [0, 1]→ G is defined as αs(t) := H(s, t). Let δ > 0 be such that

H(s1, t1)
−1H(s2, t2) ∈W

for all s1, s2, t1, t2 ∈ [0, 1] with |s1 − s2| + |t1 − t2| < δ. Then for all s ∈ [0, 1], the partition
{tk}nk=0 := {

k
n}

n
k=0 is good, where we choose n large enough that 1

n <
δ
2 .
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Let

A := {s ∈ [0, 1] : ϕs(g) = ϕ0(g)} .

Since 0 ∈ A 6= ∅, it will be enough to show that A is open and closed.

To see that A is closed, we will show that if (sj)j∈N ⊂ A and sj → s for j →∞, then s ∈ A.
Let αsj and αs be the corresponding paths and let {tk}nk=0 be the good partition of [0, 1] chosen
above. By continuity of H , one deduces that

lim
j→∞

αsj (tk) = αs(tk) .

Writing xsj ,k := αsj (tk) and xs,k := αs(tk), and using that the ϕsj are continuous, one deduces
that

lim
j→∞

ϕ(x−1
sj ,k−1xsj ,k) = ϕs(x

−1
s,k−1xs,k) .

Thus

lim
j→∞

ϕsj (g) = lim
j→∞

n−1∏
k=0

ϕ(x−1
sj ,k

xsj ,k+1) =
n−1∏
k=0

ϕs(x
−1
s,kxs,k+1) .

Since each term on the left hand side is equal to ϕ0(g), so is the one on the right hand side.

To see that A is open, let t ∈ A and let s ∈ [0, 1] be close enough to t so that αs ⊂ ∪nj=0xjW ,
where xj := α(tj) were defined at the beginning of the proof. We can define yk := x−1

s,kxt,k ∈W
so that

x−1
s,k−1xs,k = yk−1x

−1
t,k−1xt,ky

−1
k ,
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and

ϕs(g) =
n∏
k=1

ϕ(x−1
s,k−1xs,k) =

n∏
k=1

ϕ(yk−1x
−1
t,k−1xt,ky

−1
k ) =

n∏
k=1

ϕ(x−1
t,k−1xt,k) = ϕt(g) .

Thus s ∈ A, that is A is open.

3. It is easy to see that ϕ is continuous. To see that it is a homomorphism, let α be a path from e

to g and β a path from e to h. Then the concatenation of α with gβ is a path from e to gh and by
definition ϕ(gh) = ϕ(g)ϕ(h). The uniqueness follows immediately from Proposition 2.1.7.

2.5 Haar Measure and Homogeneous Spaces

2.5.1 Haar Measure

Let X be a locally compact topological space and G a topological group. A left action of G
on X by homeomorphisms is a homomorphism G→ Homeo(X), that is a map

G×X −→ X

(g, x) 7−→ gx

such that (g2g1)x = g2(g1x) for all g1, g2 ∈ G and x ∈ X . The action is continuous ifG×X → X

is a continuous map, in which case

ϕg : X −→ X

x 7−→ gx

is a homeomorphism with inverse ϕg−1 . If Cc(X) is the space of continuous functions with
compact support and G acts on X , then there is a continuous representation λ : G→ Iso(Cc(X))
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defined by (λ(g)f)(x) := f(g−1x) (see Lemma A.3). LikewiseG acts continuously on the left on
the spaceCc(X)∗ of continuous linear functionals onCc(X), via the contragredient representation
λ∗(g)(Λ))(f) := Λ(λ(g−1)f).

Remark A right G-action on X (g, x) 7−→ xg would induce a right G-action on Cc(X),
(ρ(g)f)(x) := f(xg) and hence on Cc(X)∗, (ρ∗(g)(Λ))(f) := Λ(ρ(g)(f)).

A left (resp. right) action is an action for which, given the product g1g2 acting on X , first g2
acts (resp. g1) followed then by g1 (resp. g2).

Theorem 2.2. Riesz Representation Theorem

♥

LetX be a locally compact Hausdorff topological space. If Λ is a positive linear functional
on Cc(X) (that is Λ(f) ≥ 0 if f ∈ Cc(X) with f ≥ 0), then there exists a unique regular
Borel measure µ on X that represents Λ, that is such that for every f ∈ Cc(X),

Λ(f) =

∫
X
f(x) dµ(x) .

(For the definition of regular Borel measure see Definition A.7.)

Notice that the action on the left of a group G on Λ is reflected in the action on the measure
given by the contragredient action and the identification of functionals with regular Borel measures
given by Riesz Representation Theorem. In other words the G-action on measures on Cc(X) is
denoted by (g, µ) 7→ g∗µ, where

(g∗µ)(A) := µ(g−1A) ,

so that

(λ(g)∗Λ)(f) =

∫
X
f(gx) dµ(x) =

∫
X
f(x) d(g∗µ)(x) =

∫
X
f(x) dµ(g−1x) .

A particular action is the one of a locally compact Hausdorff group on itself.

Definition 2.4. (Haar measure)
A left (resp. right) Haar measure on a locally compact Hausdorff group G is a non-zero
positive linear functional

m : Cc(G)→ C

that is invariant under left (resp. right) translation, that is such that

(g∗m)(f) = m(f)
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♣for all f ∈ Cc(G).

In the following we will use the notations m(f),
∫
G f(x), dm(x) or dx according to what we

want to emphasize or for simplicity.

Theorem 2.3. (Existence and Uniqueness of the Haar measure, 1933)

♥

A left (resp. right) Haar measure on a locally compact Hausdorff group always exists and
is unique up to positive multiplicative constants.

We will verify the uniqueness. However the proof of the existence of the Haar measure in
general is long, technical and does not bring much insight. There are however cases in which the
proof is simple and follows on standard yet useful techniques. This is the case for example for
compact groups (see [13, Theorem 2.2.3]) or for Lie groups (see ??).

Lemma 2.3

♥

Let m be a left Haar measure. If f ∈ Cc(G) and x ∈ G, let f̌(x) := f(x−1). Then
n(f) := m(f̌) is a right Haar measure.

Proof We need to verify that n(ρ(g)(f)) = n(f) for every g ∈ G and for every f ∈ Cc(G).
Notice that

(ρ(g)f )̌)(x) = (ρ(g)f)(x−1) = f(x−1g)

so that

n(ρ(g)f) = m((ρ(g)f )̌) =

∫
G
f(x−1g) dm(x)

=

∫
G
f̌(g−1x) dm(x) =

∫
G
f̌(x) dm(x) = n(f) .

Lemma 2.4

♥

Let G be a locally compact Hausdorff group with left Haar measure m. Then
1. supp(m) = G, and
2. If h ∈ C(G) is such that ∫

G
h(x)ϕ(x) dm(x) = 0

for all ϕ ∈ Cc(G), then h ≡ 0.

Proof (1) Recall that supp(m) := {x ∈ G : for every open set U containing x, m(U) > 0}.
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Since m 6≡ 0, there exists f ∈ Cc(G) such that m(f) > 0. Let K := supp(f) with m(K) > 0.
If G 6= supp(m), then there exists x ∈ G r supp(m) and an open neighborhood U 3 x with
m(U) = 0. But a finite number of translates of U would cover K, so that m(K) = 0, which is a
contradiction.

(2) We show that h(e) = 0 (which is anyway all we need in the proof of the uniqueness of the Haar
measure) and the argument for any other point follows by translation. Let ε > 0. By continuity of
h there exists an open neighborhood V 3 e such that for all g ∈ V

|h(g)− h(e)| < ε .

By Urysohn’s lemma there exists ϕ ∈ Cc(G) such that ϕ ≥ 0, ϕ(e) > 0 and supp(ϕ) ⊂ V . Since∫
G h(g)ϕ(g) dm(g) = 0 for all ϕ ∈ Cc(G), then

|h(e)|
∣∣∣∣∫
G
ϕ(g) dm(g)

∣∣∣∣
=

∣∣∣∣∫
G
h(e)ϕ(g) dm(g)

∣∣∣∣
=

∣∣∣∣∫
G
h(g)ϕ(g) dm(g)−

∫
G
h(e)ϕ(g) dm(g)

∣∣∣∣
≤
∫
G
|h(g)− h(e)|ϕ(g) dm(g)

≤ ε

∫
G
ϕ(g) dm(g) ,

from which it follows that |h(e)| < ε for all ε > 0, that is h(e) = 0.

We remark that we used in the first part of the
proof that G is a topological group. In fact,
the fact that we can cover K with translates of
a neighborhood U of x ∈ GrK is only possible
because we are in a topological group.

Proof [Proof of the uniqueness of the Haar measure in Theorem 2.3] Letm be an arbitrary left Haar
measures and n an arbitrary right Haar measure (which exists by Lemma 2.3). Let f, g ∈ Cc(G)
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be such that m(f) 6= 0 (this certainly exists since m is non-zero).

m(f)n(g) = m(f)

∫
G
g(y) dn(y)

(1)
= m(f)

∫
G
g(yt) dn(y)

=

∫
G
f(t)

(∫
G
g(yt) dn(y)

)
dm(t)

(2)
=

∫
G

(∫
G
f(t)g(yt) dm(t)

)
dn(y)

(3)
=

∫
G

(∫
G
f(y−1x)g(x) dm(x)

)
dn(y)

(4)
=

∫
G

(∫
G
f(y−1x) dn(y)

)
g(x) dm(x) ,

where we used:

– in (1) that n is right invariant;
– in (2) and in (4) Fubini;
– in (3) the right invariance of n, the left invariance of m and we set x = yt.

Note that we could use Fubini’s theorem since the support of all functions is compact and hence∫
G×G

|f(t)g(yt)| dm(t) dn(y) <∞

and ∫
G×G

|f(y−1x)g(x)| dm(x) dn(y) <∞

Let us now define wf : G→ R by

wf (x) :=
1

m(f)

∫
G
f(y−1x) dn(y) ,

so that

n(g) =
1

m(f)

∫
G

(∫
G
f(y−1x) dn(y)

)
g(x) dm(x) =

∫
G
wf (x)g(x) dm(x) .

Since the left hand side is independent of f , for all f1, f2 ∈ Cc(X) with m(fi) 6= 0, i = 1, 2, then∫
G
wf1(x)g(x) dm(x)−

∫
G
wf2(x)g(x) dm(x) = 0 .

Since wf1 − wf2 is continuous, by Lemma 2.4 wf (e) is independent of f , so that wf (e) = C for
some C ∈ R. Thus

m(f)C = m(f)wf (e) = m(f)
1

m(f)

∫
G
f(y−1) dn(y) =

∫
G
f(y−1) dn(y) = n(f̌) .
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If now we choose n(f) := m′(f̌), which is a well-defined left Haar measure by Lemma 2.3, then

m(f)C = m′(f)

for all f ∈ Cc(G) such that m(f) 6= 0.

Example 2.25

1. The Lebesgue measure on (Rn,+) is the left and right Haar measure.
2. The Lebesgue measure on G := (R>0, ·) is neither left nor right invariant, but

f 7→
∫
G
f(x)

dx

x

defines both the left and the right Haar measure on G.
3. If G is discrete, then the counting measure is both a left and a right Haar measure.

The above examples bring to the question as to when a left Haar measure is also right invariant.
To approach this question let Aut(G) be the group of continuous invertible automorphisms of G
with continuous inverse. Then Aut(G) acts on Cc(G) on the left via

(α · f)(x) := f(α−1(x))

for α ∈ Aut(G), f ∈ Cc(G) and x ∈ G. If m is a left Haar measure on G, one can easily verify
that the linear form

f 7→ m(α · f)

is also a left Haar measure. In fact

m(α · λ(g)(f)) =
∫
G
(α · λ(g)(f))(x) dm(x) =

∫
G
(λ(g)f)(α−1(x)) dm(x)

=

∫
G
f(α−1(g−1x)) dm(x) =

∫
G
(α · f)(x) dm(x) = m(α · f)

Thus there exists a positive constant modG(α) such that

m(α · f) = modG(α)m(f) . (2.5)

Lemma 2.5

♥The function modG : Aut(G)→ (R>0, ·) is a homomorphism.

Proof Since Aut(G) acts onCc(G) on the left, then (αβ) ·f = α ·(β ·f). Then for all f ∈ Cc(G)

modG(αβ)m(f) = m((αβ) · f) = m(α · (β · f))

= modG(α)m(β · f)

= modG(α)modG(β)m(f) .
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Let now consider the conjugation automorphism α = cg, for g ∈ G,

cg : G→ G

x 7→ gxg−1 ,
(2.6)

so that (cg · f)(x) = f(g−1xg). We use the notation ∆G(g) := modG(cg) and we call
∆G : G→ (R>0, ·) the modular function of G. Explicitly the formula (2.5) for α = cg gives

∆G(g)m(f) = m(cg · f) =
∫
G
(cg · f)(x) dm(x) =

∫
G
f(g−1xg) dm(x)

=

∫
G
f(xg) dm(x) = m(ρ(g)f)

so that

m(ρ(g)f) = ∆G(g)m(f) , (2.7)

which shows that the modular function captures the extent to which a given left Haar measure fails
to be right invariant.

Proposition 2.2

♠

Let G be a locally compact Hausdorff topological group with left Haar measure m and let
∆G : G→ R>0 be its modular function. Then

1. ∆G is continuous and
2. for every f ∈ Cc(G)∫

G
f(x−1)∆G(x) dm(x) =

∫
G
f(x) dm(x) .

Proof (1) Since ρ : G→ Iso(Cc(G)) is continuous when Iso(Cc(G)) is given the strong operator
topology, then

lim
x→y
‖ρ(x)f − ρ(y)f‖∞ = 0

for all f ∈ Cc(G) and all x, y ∈ G. It follows that

0 = lim
x→y
|m(ρ(x)f)−m(ρ(y)f)| = lim

x→y
|m(f)| |∆G(x)−∆G(y)| ,

that is ∆G is continuous.
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(2) Let us set f∗(x) := f(x−1)∆G(x) and let us observe that

(λ(g)f)∗(x) = (λ(g)f)(x−1)∆G(x) = f(g−1x−1)∆G(x)

= ∆G(g)
−1f(g−1x−1)∆G(xg) = ∆G(g)

−1f∗(xg)

= ∆G(g)
−1(ρ(g)f∗)(x) .

Notice that m′(f) := m(f∗) is also a left Haar measure. In fact,

m((λ(g)f)∗) = m(∆G(g)
−1(ρ(g)f∗)) = ∆G(g)

−1m(ρ(g)f∗) = ∆G(g)
−1∆G(g)m(f∗) = m(f∗)

Thus there exists C > 0 such that m′(f) = Cm(f) and we want to show that C = 1. Since ∆G

is continuous, for every ε > 0 there exists a symmetric neighborhood V 3 e such that

|∆G(x)− 1| < ε

for every x ∈ V . Let f ∈ Cc(G) be a symmetric function such that f ≥ 0 and with support in V
and such that m(f) = 1. Then for every ε > 0

|1− C| = |(1− C)m(f)| = |m(f)−m′(f)| = |m(f)−m(f∗)|
(∗)
= |m(f)−m(∆Gf) = |m((1−∆G)f)| < εm(f) = ε ,

where in (∗) we used that f is symmetric and in (∗∗) that f ≥ 0.

Definition 2.5

♣

A group G is unimodular if ∆G ≡ 1, that is if the left Haar measure and the right Haar
measure coincide.

Since for a left Haar measurem we have by Lemma 2.3 thatm(f̌) is a right Haar integral, the
following is immediate

Corollary 2.1

♥The Haar measure of a group G is inverse invariant if and only if the group is unimodular.

Example 2.26

1. Any locally compact Hausdorf Abelian group is unimodular.
2. Any discrete group is unimodular, since the Haar measure is just the counting measure.
3. Since there are no non-trivial compact subgroups of (R>0, ·), any compact group is

unimodular.
4. We show that GL(n,R) is unimodular. Since GL(n,R) is an open subset of Rn×n, we

consider the restriction dm(X) :=
∏n
i.j=1 dXi,j to GL(n,R) of the Lebesgue measure

on Rn×n, where X = (Xi,j)
n
i,j=1. We claim that |detX|−n dm(X) is both a left
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and a right Haar measure on GL(n,R). In fact, let Tg : Mn×n(R) → Mn×n(R) be
defined by Tg(X) := gX and let us observe, by writing X = ((v1), (v2), . . . , (vn)), that
|det(dTg)| ≡ | det g|n. Thus∫

GL(n,R)
(λ(g)f)(X)|detX|−n dm(X)

=

∫
GL(n,R)

f(g−1X)| detX|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(g−1X)| det(g−1X)|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(X)|det(X)|−n| | det(dTg−1(X))|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(X)|det(X)|−n| | det g−1|−n dm(X)

=

∫
GL(n,R)

f(X)|detX|−n dm(X) .

A similar calculation shows the right invariance.
5. We consider the group R>0 nη R, where η : R>0 → Aut(R) is defined by η(a)(b) := ab,

so that the product is (a, b)(a′, b′) = (aa′, b + ab′). Then R>0 nη R is the group of affine
transformations of the real line, (a, b)x = ax + b, where a ∈ R>0 and b ∈ R and can be
identified with the group {(

a b

0 1

)
: a ∈ R>0, b ∈ R

}
acting on R ' {(x, 0) : x ∈ R} ⊂ R2. It is easy to verify that da

a2
db is a left Haar measure

and that daa db is a right Haar measure, so that R>0 nη R is not unimodular.
6. We consider the Heisenberg group Rnη R2, where η : R→ Aut(R2) is defined by

η(x)

(
y

z

)
:=

(
y

z + xy

)

for x ∈ R,

(
y

z

)
∈ R2, so that the group operation is

(
x1,

(
y1

z1

))(
x2,

(
y2

z2

))
=

(
x1 + x2,

(
y1 + y2

z1 + z2 + x1y2

))
.
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It is easy to see that it can be identified with the group

1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


and that the Lebesgue measure is both the left and the right Haar measure, so that Rnη R2

is unimodular.
7. The group

P :=

{(
a b

0 a−1

)
: a, b ∈ R, a 6= 0

}
(2.8)

is not unimodular since da
a2
db is a left Haar measure and da db is a right Haar measure.

8. Any closed normal subgroup of a unimodular group is unimodular. This follows from the
following proposition.

Proposition 2.3

♠

Let G be a locally compact Hausdorff group and let H ⊴ G be a closed normal subgroup.
Then ∆H = ∆G|H . Thus if G is unimodular, H is also unimodular.

We will prove this later. For the moment we remark that it is essential that H is normal. In
fact, for example GL(2,R) is unimodular, but the subgroup P in (2.8) is not.

Proposition 2.4

♠

Let G be a locally compact Hausdorff topological group with left Haar measure m. Then
m(G) <∞ if and only if G is compact.

Proof (⇐) Since G is compact, the function identically equal to 1 is in Cc(G) Thus
m(G) = m(1) <∞.

(⇒) Sincem is regular andm(G) <∞, there is a compact set C ⊂ G withm(C) < 1
2m(G). But

then since m(xC) = m(C) for every x ∈ G, xC and C cannot be disjoint, hence x ∈ CC−1, that
is G = CC−1, which is compact.

If G is compact, the Haar measure is usually normalized so that m(G) = 1.
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2.5.2 Homogeneous Spaces of Topological Groups

Let G be a group and H < G a subgroup. Then G acts on the homogeneous space G/H on
the left by translations (g, g′H) 7→ gg′H and the projection p : G → G/H is a G-map, that is it
commutes with the G-action on G and on G/H . If G and H are topological groups, we endow
G/H with the quotient topology, that is U ⊂ G/H is open if and only if p−1(U) ⊂ G is open.
This is the finest topology that makes p continuous.

Proposition 2.5

♠

Let H ≤ G be topological groups. Then:
1. The projection p is open, that is it sends open sets into open sets.
2. The action of G on G/H is continuous.
3. The quotient G/H is Hausdorff if and only if H is closed.
4. If G is locally compact, then also G/H is locally compact.
5. If G is locally compact and H ≤ G is closed, for every compact set C ⊂ G/H there

exists a compact set K ⊂ G such that p(K) = C.

Proof 1. and 2. follow from the definitions and the properties of topological groups.

3. If G/H is Hausdorff, then points are closed. In particular eH ∈ G/H is closed and hence
p−1(eH) = H ≤ G is closed.

Conversely let us suppose that H is closed and let xH and yH be distinct points in G/H .
Then xHy−1 is a closed set not containing the identity in G. Thus G r xHy−1 is an open
neighborhood of e ∈ G and hence by Proposition 2.1 there exist U an open neighborhood of e ∈ G
such that U−1U ⊂ Gr xHy−1. Thus U−1U ∩ xHy−1 = ∅, that is UxH and UyH are disjoint
neighborhood respectively of xH and yH .

4. We have to show that every point in G/H has a compact neighborhood. Let p(x) ∈ G/H and,
since G is locally compact, let x ∈ U ⊂ C with U open and C compact. Then p(U) is open (by
1.), p(C) is compact (since p is continuous) and p(x) ∈ p(U) ⊂ p(C).

5. Let U be an open relatively compact neighborhood of e ∈ G. Then {p(Ux)}x∈G is an open
cover of C and hence there exists a finite subcover C ⊂ ∪nj=1p(Uxj). Then

K :=
n⋃
j=1

Uxj ∩ p−1(C) ⊂ G .
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is a compact subset in G such that p(K) = C.

If G acts transitively on a space X , then there is an isomorphism of G-spaces G/Gx → X ,
where Gx = StabG(x) for x ∈ X , given by the map gGx 7→ gx. If X is a topological space
and the action of G on X is continuous, then the G-map is also continuous. If G is a locally
compact second countable Hausdorff space andX is locally compact Hausdorff, then the bijection
is a homeomorphism.

Example 2.27

1. Let us consider the action of O(n + 1,R) on Sn ⊂ Rn+1. Notice that g ∈ O(n + 1,R) if
and only if tgg = Id, which implies that ‖gv‖ = ‖v‖ for all v ∈ Rn+1; in particular Sn is
preserved by O(n+1,R). Moreover this action is transitive, that is O(n+1,R)en+1 = Sn

and in fact even the SO(n+ 1,R)-action is transitive on Sn. The stabilizer of en+1 ∈ Sn is

SO(n+ 1,R)en+1 = {g ∈ SO(n+ 1,R) : gen+1 = en+1} '

{(
SO(n,R) 0

0 1

)}
< SO(n+ 1,R) ,

so that

Sn ' SO(n+ 1,R)/SO(n,R) .

2. The upper half planeH2
R := {x+ ıy ∈ C : y > 0} is an SL(2,R)-space, with the SL(2,R)-

action given by fractional linear transformations: if g =

(
a b

c d

)
∈ SL(2,R) and z ∈ H2

R,

then (
a b

c d

)
z :=

az + b

cz + d
.

It is easy to see that the action is transitive since(
y1/2 xy−1/2

0 y−1/2

)
ı = x+ ıy

and that SL(2,R)ı = SO(2,R). Thus the map SL(2,R)/ SO(2,R) → H2
R identifies the

upper half plane as the SL(2,R)-orbit of ı.
3. The group SL(2,R) acts transitively also on R ∪ {∞} with P = SL(2,R)∞, where P is as

in (2.8).
4. We generalize now the action in (2). Let

Sym+
1 (n) := {X ∈Mn×n(R) : X is symmetric, positive definite and det(X) = 1} .

Then SL(n,R) acts transitively on Sym+
1 (n) via gX = gXgt, for g ∈ SL(n,R) and
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X ∈ Sym+
1 (n). Moreover

SL(n,R)Idn = {g ∈ SL(n,R) : gIdngt = Idn} = SO(n,R) ,

so that

SL(n,R)/ SO(n,R) ' Sym+
1 (n) .

If n = 2 this is nothing but the example in (2) (Exercise).
5. We generalize now the example in (3). We consider

Pn−1(R) = P(Rn) := {V ⊂ Rn : is a subspace with dimV = 1}

with the transitive SL(n,R)-action. In this case

SL(n,R)<e1> =

{(
a x

0 A

)
: a ∈ R, a 6= 0, x ∈ Rn−1, A ∈ GL(n− 1,R),detA = a−1

}
and we identify SL(n,R)/SL(n,R)<e1> with Pn−1(R). If n = 2 this is the example in (3).

6. Let

L := {Zf1 + · · ·+ Zfn : fj ∈ Rn, for j = 1, . . . , n, det(f1, . . . , fn) = 1}

be the space of lattices of covolume one in Rn (see Definition 2.7).

Figure 2.1: A lattice in L with f1 =

(
1
0

)
and f2 =

(
1
1

)

The group SL(n,R) acts transitively on L via

g(Zf1 + · · ·+ Zfn) := Zgf1 + · · ·+ Zgfn
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and the stabilizer of Ze1 + · · · + Zen is SL(n,Z). Thus L can be identified with
SL(n,R)/ SL(n,Z).

We prove now that if H ⊴ G is closed and normal, then ∆G|H = ∆H . We start with the
following lemma, only the first part of which (the definition) will be immediately used.

Lemma 2.6

♥

Let G be a locally compact Hausdorff group and H < G a closed subgroup. If f ∈ Cc(G)
and dh is the left Haar measure on H then

fH(ẋ) :=

∫
H
f(xh) dh

is in Cc(G/H). Moreover the linear operator AH : Cc(G) → Cc(G/H) defined as
AH(f) := fH is surjective.

Proof The function fH is obviously well defined as it is independent of the choice of representative
of the coset xH . Moreover it is continuous1and supp fH ⊂ p(supp f). Thus fH ∈ Cc(G/H).

To prove the surjectivity, let F ∈ Cc(G/H), let C ⊂ G/H be the compact support of F and
let K ⊂ G be a compact set such that p(K) = C (which exists by Proposition 2.5.5.). We will
define f ∈ Cc(G) such that fH = F . Let η ∈ Cc(G) such that 0 ≤ η ≤ 1 and η|K ≡ 1, which
exists by Urysohn’s Lemma ([7]). Then by definition

((F ◦ p) · η)H = F · ηH

so that F = ((F◦p)·η)H
ηH

. Thus we define

f(g) :=


(F◦p)(g)·η(g)
(ηH(p))(g)

if (ηH(p))(g) 6= 0

0 if (ηH ◦ p)(g) = 0 ,

which we need to verify to be in Cc(G). In fact obviously supp f ⊂ supp η. Moreover f is
continuous as it is continuous on two open sets U1 and U2 whose union is G, namely on

1. U1 := {g ∈ G : (ηH◦))(g) 6= 0} by definition and on
2. U2 := G rKH , where it vanishes. If fact if g ∈ G rKH , then p(g) /∈ C = suppF , so

that (F ◦ p)(g) = 0.

So the only thing to verify is that G = U1 ∪ U2. In fact, if g ∈ G and g /∈ U1, then

1A function f : G → C is right (resp. left) uniformly continuous if for every ϵ > 0 there exist a neighborhood V of
e ∈ G such that |f(s) − f(t)| < ϵ for every ts−1 ∈ V (resp. t−1s ∈ V ). Right uniform continuity follows from
Lemma ?? applied to X = G and the action of G on G by left translations: an analogous statement holds for left
uniform continuity.
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0 = ηH ◦ p(g)) =
∫
H η(gh) dh. Since η ≥ 0 and η is continuous, this implies that η(gh) = 0 for

all h ∈ H . Thus gh /∈ K, which means that g /∈ KH , that is g ∈ U2.

Finally,

fH(ẋ) =

∫
H

(F ◦ p)(xh) · η(xh)
(ηH ◦ p)(xh)

dh =

∫
H
F (ẋ)

η(xh)

ηH(xhH)
dh = F (ẋ) .

Proof [Proof of Proposition 2.3] Since H ⊴ G and is closed, the quotient G/H is a locally
compact Hausdorff topological group by Proposition 2.5.4. and hence there exists a left Haar
measure on G/H , which we denote by dẋ. We claim that the functional m(f) :=

∫
G/H f

H(ẋ) dẋ

is a left Haar measure on Cc(G). In fact

m(λ(g)f) =

∫
G/H

(λ(g)f)H(ẋ) dẋ
(∗)
=

∫
G/H

(λ(g)fH)(ẋ) dẋ =

∫
G/H

fH(ẋ) dẋ = m(f) ,

where (∗) follows from the fact that left and right translations commute. If t ∈ H and f ∈ Cc(G)),
then

m(ρ(t)f) =

∫
G/H

(∫
H
(ρ(t)f)(xh) dh

)
dẋ

(∗∗)
=

∫
G/H

(∫
H
∆H(t)f(xh) dh

)
dẋ

= ∆H(t)

∫
G/H

(∫
H
f(xh) dh

)
dẋ = ∆H(t)

∫
G/H

fH(ẋ) dẋ = ∆H(t)m(f) ,

where we used in (∗∗) that dh is a left Haar measure. Comparing this with (2.7) shows that
∆G|H = ∆H .

We remark that the only place in the proof in which we used that H is a normal subgroup is
to infer that there exists a left Haar measure on. G/H . The following result thus follows with the
same proof.

Corollary 2.2

♥

Let G be a locally compact Hausdorff topological group, H ≤ G a closed subgroup such
that there exists a left invariant regular Borel measure on the topological spaceG/H . Then
∆G|H = ∆H .

Luckily the above condition on the equality of the modular functions is not only necessary but
also sufficient:
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Theorem 2.4. (Weil Formula)

♥

Let G be a locally compact Hausdorff topological group, H ≤ G a closed subgroup. Then
there exists a left invariant positive Borel measure dẋ on G/H if and only if ∆G|H = ∆H .
Such an invariant measure is characterized by Weil formula∫

G
f(g) dg =

∫
G/H

(∫
H
f(xh) dh

)
dẋ

for every f ∈ Cc(G), where dg and dh are the left Haar measures respectively on G and
on H .

Corollary 2.3

♥

Let G be a locally compact Hausdorff topological group, and let H ′ and H be closed
subgroups with H ′ ≤ H ≤ G.

1. If G and H are unimodular, there exists a unique (up to scalar) G-invariant measure
on G/H .

2. If G,H and H ′ are unimodular, there exists invariant measures dx, dy and dz on
G/H ′, on G/H and on H/H ′ such that∫

G/H′
f(x) dx =

∫
G/H

(∫
H/H′

f(yz) dz

)
dy

for all f ∈ Cc(G/H ′).

Example 2.28 We look for an SL(2,R)-invariant measure on the upper half plane H2
R '

SL(2,R)/SO(2,R). The group SO(2,R) is unimodular since it is compact, and SL(2,R) is
also unimodular since it is equal to its own commutator subgroup,

SL(2,R) = [SL(2,R), SL(2,R)] .

We will see later that this is true for all semisimple Lie groups (see Proposition 4.12, of which
SL(2,R) is an example), but in this particular case we can see it from the fact that SL(2,R) can be
generated by the upper triangular and the lower triangular matrices and that for a, x ∈ R, a 6= 0,[(

a 0

0 a−1

)
,

(
1 x

0 1

)]
=

(
1 (a2 − 1)x

0 1

)
.

Thus there exists a positive SL(2,R)-invariant measure on H2
R, which we proceed to compute.

If g =

(
a b

c d

)
, z ∈ H2

R and w := gz, it is easy to check that

1. Imw = |cz + d|−2 Im z, and
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2. dw = (cz + d)−2dz,

so that (Im z)−2dz dz is an SL(2,R)-invariant measure on H2
R. Since dz dz = −2ı dx dy,

(Im z)−2|dz dz| = y−2 dx dy is a positive SL(2,R)-invariant measure onH2
R. Thus Weil formula

in this case reads ∫
SL(2,R)

f(g) dg =

∫
H2

R

(∫
SO(2,R)

f(gk) dk

)
y−2 dx dy ,

where we identify gk with gı = x + ıy, and where dk := 1
2πdθ is the normalized Haar measure

on SO(2,R) =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ [0, 2π)

}
.

In this particular case, since also P acts transitively on H2
R, we can decompose the measure

on H2
R even further. In fact, the subgroup

P+ :=

{(
a b

0 a−1

)
: a, b ∈ R, a > 0

}
also acts transitively and freely on H2

R (that is with trivial stabilizer). Moreover, just like
P = A nη N , we can also write P+ = A+ nη N , where A+ ' (R>0, ·) is the subgroup of
diagonal matrices with positive entries.

Thus, any z = x+ıy ∈ H2
R can be obtained by acting upon ı via the elementn(x)a(y) ∈ NA+

as follows: (
1 x

0 1

)
︸ ︷︷ ︸
=:n(x)

(
y1/2 0

0 y−1/2

)
︸ ︷︷ ︸

=:a(y)

ı =

(
1 x

0 1

)
ıy = x+ ıy .

If φ ∈ Cc(H2
R), we can consider the composition

NA+ //

Φ

>>H2
R

ϕ / / R

namely

φ(x+ ıy) = φ(n(x)a(y)ı) = Φ(n(x)a(y)) .

Thus ∫
H2

R

φ(x+ ıy)
dx dy

y2
=

∫
R>0

(∫
R
Φ(n(x)a(y)) dx

)
dy

y2
,
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so that we can write∫
SL(2,R)

f(g) dg =

∫
R>0

(∫
R

(∫
SO(2,R)

f(n(x)a(y)k) dk

)
dx

)
dy

y2
. (2.9)

Any element in P+ (hence in H2
R) can be written also uniquely as the product of an element

in A+ and one in N . In fact an easy calculation shows that

n(x)a(y) = a(y)a(y)−1n(x)a(y) = a(y)n(y−1x) ,

Thus with

A+N //

Ψ

>>H2
R

ϕ / / R

we have ∫
H2

R

φ(x+ ıy)
dx dy

y2
=

∫
R>0

(∫
R
Ψ(a(y)n(y−1x)) dx

)
dy

y2

=

∫
R>0

(∫
R
yΨ(a(y)n(x)) dx

)
dy

y2

=

∫
R>0

(∫
R
Ψ(a(y)n(x)) dx

)
dy

y
.

(2.10)

Thus ∫
SL(2,R)

f(g) dg =

∫
R>0

(∫
R

(∫
SO(2,R)

f(a(y)n(x)k) dk

)
dx

)
dy

y
.

Notice that both (2.9) and (2.10) are examples of Weil’s formulas. However in this case the
group P+ is not unimodular, while the subgroup N is. There is in fact the following more general
version of Weil’s formula that we state without proof.

Definition 2.6. (Quasi-invariant measure)

♣

Letm be a measure onG/H . We say thatm is quasi-invariant if there exists a homomorphism
χ : G→ R>0 such that

g∗m(A) = χ(g)m(A)

for every A ⊂ G/H measurable and every g ∈ G. The homomorphism χ is the modulus of
the quasi-invariant measure.
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Theorem 2.5. (Generalized Weil Formula)

♥

Let G be a locally compact Hausdorff group and H < G a closed subgroup. There exists a
quasi-invariant measure on G/H with modulus χ if and only ∆G|H = ∆H · χ|H .

Example 2.29 On S1 ' SL(2,R)/P there is no quasi-invariant measure since SL(2,R) is
unimodular and P is not, so that such homomorphism χ does not exist. On the other hand, in
the above example, since P+ is not unimodular and N is, there could be a homomorphism χ that
extends to P+. The above calculation shows that this is indeed the case.

The following is a fundamental example to which one can apply the above discussion.

Definition 2.7. (Lattice Subgroup)

♣

A lattice Γ in a locally compact Hausdorff group G is a subgroup with the following
properties:

1. Γ is discrete, and
2. there exists on G/Γ a finite G-invariant regular Borel measure.

Proposition 2.6

♠Let G be a topological group that admits a lattice Γ < G. Then G is unimodular.

Proof The modular function ∆G is a homomorphism that contains Γ is its kernel. Hence it
descends to a ∆G-map ∆: G/Γ→ R>0, that is a map such that for h ∈ G and x ∈ G/Γ

∆(hx) = ∆G(h)∆(x) .

Thus the push-forward via ∆ of the finiteG-invariant measure onG/Γ is a finite ∆G(G)-invariant
measure on R>0. This is impossible unless ∆G(G) ≡ 1.

Remark According to Proposition 2.6 a necessary condition for the existence of a lattice subgroup
is that G is unimodular. Once this is verified, and Γ < G is any discrete subgroup, Theorem 2.4
assures the existence of such a uniqueG-invariant measure onG/Γ. The point at stake here is thus
the finiteness of the measure.

Example 2.30 We remarked already that the Lebesgue measure on (Rn,+) is the Haar measure
and that Rn is unimodular.

1. The subgroup Z ' {(n, 0) : n ∈ Z} < R2 is discrete but it is not a lattice because the
fundamental domain of the action of Z on R2 is an infinite strip, which hence has infinite
Lebesgue measure.

2. The subgroups Z2 < R2 and Zn < Rn are lattices whose covolume is easily computed.
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Proof [Proof of Theorem 2.4] One direction has been proven already as Proposition 2.3 and
Corollary 2.3.

To show the other direction, we make the following claim:

Claim 2.5.1. Let AH : Cc(G)→ Cc(G/H) be the averaging operator defined in Lemma 2.6 and
assume that ∆G|H = ∆H . If AH(f1) = AH(f2), then

∫
G f1(g) dg =

∫
G f2(g) dg.

We assume that the claim is proven and proceed to conclude the proof. Let F ∈ Cc(G/H)

and let f ∈ Cc(G) be such that fH = F . The existence of such an f is assured by the surjectivity
of AH in Lemma 2.6. Because of the claim we can define a positive functional on Cc(G/H) as
follows:

m : Cc(G/H) −→ R

F 7→
∫
G
f(g) dg .

By Riesz Representation Theorem, this is a positive Borel measure dẋ which is also left invariant
because of the left invariance of dg. Then Weil formula follows at once:∫

G
f(g) dg = m(F ) =

∫
G/H

F (ẋ) dẋ =

∫
G/H

(∫
H
f(xh) dh

)
dẋ .

To prove the claim it is enough that we show that, under those hypotheses, if fH = 0, then∫
G f(g) dg = 0. This will follow immediately once we will have proven that, under the hypotheses

of the Claim, ∫
G
f1(g)

(∫
H
f2(gh) dh

)
dg =

∫
G
f2(g)

(∫
H
f1(gh) dh

)
dg . (2.11)

In fact, if fH2 = 0, then it follows from (2.11) that

0 =

∫
G
f2(g)

(∫
H
f1(gh) dh

)
dg =

∫
G
f2(g)f

H
1 (ġ) dg .

It is hence enough to find f1 ∈ Cc(G) such that fH1 ≡ 1 on supp(f2), which exists because of
Lemma 2.6.
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Thus we are left to prove (2.11), which is just a verification. In fact,∫
G
f1(g)

(∫
H
f2(gh) dh

)
dg

(1)
=

∫
H

(∫
G
f1(g)f2(gh) dg

)
dh

(2)
=

∫
H

(∫
G
f1(gh

−1)f2(g)∆G(h) dg

)
dh

(3)
=

∫
G

(∫
H
f1(gh

−1)∆G(h) dh

)
f2(g) dg

(4)
=

∫
G

∫
H
f1(gh)∆H(h)

−1∆G(h)︸ ︷︷ ︸
≡1

dh

 f2(g) dg

=

∫
G
f2(g)

(∫
H
f1(gh) dh

)
dg ,

where we used

– in (1) and in (3) Fubini’s theorem,
– in (2) the relation (2.7), and
– in (4) the second part of Proposition 2.2.

2.5.3 An Application

Theorem 2.6. (Mackey)

♥

Let ϕ : G → H be a measurable homomorphism of locally compact second countable
Haurdorff groups. Then ϕ is continuous.

Proof By replacing H with the closure of the image of ϕ, we may assume that the image of ϕ is
dense in H . We want to show that for every open neighborhood V ⊂ H of the identity eH ∈ H ,
there exists an open neighborhood N ⊂ G of the identity eg ∈ G such that ϕ(N) ⊂ V , that is
N ⊂ ϕ−1(V ).

Let U ⊂ H be a symmetric open neighborhood of eH ∈ H such that U2 ⊂ V . Let
(hn) ⊂ ϕ(G) be a countable dense set, which exists sinceH is second countable, and let (gn) ⊂ G
be such that ϕ(gn) = hn. We can write H = ∪n∈NhnU and hence G = ∪n∈Ngnϕ−1(U). If
m is the left Haar measure on G, there exists n ∈ N such that m(gnϕ

−1(U)) > 0, so that
m(ϕ−1(U)) > 0. Since G is locally compact and m is inner regular, there exists a compact set
A ⊂ ϕ−1(U) withm(A) > 0. Then ϕ−1(V ) ⊃ ϕ−1(U)ϕ−1(U) ⊃ AA−1, and it is hence enough
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to show that AA−1 contains an open neighborhood N of eg ∈ G.

Thus we need to prove the folllowing:

Lemma 2.7

♥

Let G be a locally compact Hausdorff topological group. If A ⊂ G is a compact set with
m(A) > 0, then A−1A contains an open neighborhood of eG ∈ G.

Proof [Perhaps fix left and right.] If Ax∩A 6= ∅, then x ∈ A−1A, so that it is enough to show
that

A−1A = {x : Ax ∩A 6= ∅} ⊃ N 3 eG ,

whereN is an open neighborhood of eG. Sincem is outer regular, thenm(A) = inf{m(W ) : W ⊃
A, W is open} and since m(A) > 0, there exists an open set W ⊃ A such that m(W ) < 2m(A).

We will show that since A is compact, there exists an open neighborhood N of eG such that
AN ⊂W , so that for every x ∈ N

1

2
m(W ) < m(A) = m(Ax) < m(W ) .

This will be enough to conclude the proof, because in fact this open neighborhood N has the
desired property that

eG ∈ N ⊂ {x : Ax ∩A 6= ∅} = A−1A .

In fact, if on the contrary for x ∈ N , Ax ∩A = ∅, then

m(Ax ∪A) = m(Ax) +m(A) = 2m(A) > m(W ) .

But this is not possible since Ax ⊂ W and A ⊂ W , imply that Ax ∪ A ⊂ W and hence
m(Ax ∪ A) < m(W ). [The idea is that whatever keeps A within W cannot translate A so that it
is disjoint from itself.]

Lemma 2.8

♥

Let G be a topological group, A ⊂ G a compact set and W ⊂ G an open set such that
A ⊂W . Then there exists a neighborhood N 3 eG such that AN ⊂W .

Proof Since W is open, for all x ∈ A there exists an open neighborhood Vx 3 eG such that
xVx ⊂W . Let Ux be a symmetric open neighborhood of eG ∈ G such that UxUx ⊂ Vx. The sets
{xUx : x ∈ A} form an open cover of A and, since A is compact, there exists a finite subcover
A ⊂ x1Ux1 ∪ · · · ∪ xnUxn . Let N := Ux1 ∩ · · · ∩ Uxn ⊂ Uxj for j = 1, . . . , n. Then for
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x1, . . . , xn ∈ A,

AN ⊂ x1Ux1N ∪ · · · ∪ xnUxnN

⊂ x1Ux1Ux1 ∪ · · · ∪ xnUxnUxn
⊂ x1Vx1 ∪ · · · ∪ xnVxn ⊂W .

K Chapter 2 Exercise k

1. Show that if X is a compact metric space, then Iso(X) is a closed subgroup of Homeo(X).
2. Verify that the Euclidean topology on GL(n,R) is the same as the compact-open topology.
3. Show that Homeo(S2) is not locally compact.
4. Show that if X is a locally compact metric space, then Iso(X) is locally compact as well.
5. Show that Aut(Rn,+) = GL(n,R) and that modRn : GL(n,R) → (R>0, ·) is

modRn(α) = | detα|.
6. Let H be a Hilbert space over a field k = R or C. Show that H is locally compact if and

only if it is finite-dimensional.
7. LetX,Y, Z be topological space, and denote byC(Y,X) the set of continuous maps from Y

to X . The set C(Y,X) can be endowed with the compact-open topology, that is generated
by the subbasic sets

S(K,U) := {f ∈ C(Y,X) | f(K) ⊆ U} ,

where K ⊆ Y is compact and U ⊆ X is open.
Prove the following useful facts about the compact-open topology.
If Y is locally compact, then:
(a). The evaluation map e : C(Y,X)× Y → X, e(f, y) := f(y), is continuous.
(b). A map f : Y × Z → X is continuous if and only if the map

f̂ : Z → C(Y,X), f̂(z)(y) = f(y, z),

is continuous.
8. (a). LetX be a compact Hausdorff space. Show that (Homeo(X), ◦) is a topological group

when endowed with the compact-open topology.
(b). The objective of this exercise is to show that (Homeo(X), ◦) will not necessarily be a

topological group if X is only locally compact.
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Consider the “middle thirds” Cantor set

C =

{ ∞∑
n=1

εn3
−n : εn ∈ {0, 2} for each n ∈ N

}
⊂ [0, 1]

in the unit interval. We define the sets Un = C ∩ [0, 3−n] and Vn = C ∩ [1− 3−n, 1].
Further we construct a sequence of homeomorphisms hn ∈ Homeo(C) as follows:

hn(x) = x for all x ∈ C \ (Un ∪ Vn),
hn(0) = 0,
hn(Un+1) = Un,
hn(Un \ Un+1) = Vn+1,
hn(Vn) = Vn \ Vn+1.

These restrict to homeomorphisms hn|X on X := C \ {0}.
Show that the sequence (hn|X)n∈N ⊂ Homeo(X) converges to the identity on X but
the sequence ((hn|X)−1)n∈N ⊂ Homeo(X) of their inverses does not!
Remark However, ifX is locally compact and locally connected then Homeo(X) is a
topological group.

(c). Let S1 ⊂ C \ {0} denote the circle. Show that Homeo(S1) is not locally compact.
Remark In fact, Homeo(M) is not locally compact for any manifold M of dimension
at least one.

9. Let (X, d) be a compact metric space. Recall that the isometry group of X is defined as

Iso(X) = {f ∈ Homeo(X) : d(f(x), f(y)) = d(x, y) for all x, y ∈ X} .

Show that Iso(X) ⊂ Homeo(X) is compact with respect to the compact-open topology.
Hint: Use the fact that the compact-open topology is induced by the metric of uniform-
convergence and apply Arzelà–Ascoli’s theorem.

10. (a). The general linear group

GL(n,R) := {A ∈ Rn×n | detA 6= 0} ⊆ Rn×n

is naturally endowed with the subspace topology of Rn×n ∼= Rn2 . However, it can also
be seen as a subset of the space of homeomorphisms of Rn via the injection

j : GL(n,R)→ Homeo(Rn),

A 7→ (x 7→ Ax).

(b). Show that j(GL(n,R)) ⊂ Homeo(Rn) is a closed subset, where Homeo(Rn) ⊂
C(Rn,Rn) is endowed with the compact-open topology.
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(c). If we identify GL(n,R) with its image j(GL(n,R)) ⊂ Homeo(Rn) we can endow it
with the induced subspace topology. Show that this topology coincides with the usual
topology coming from the inclusion GL(n,R) ⊂ Rn×n.

11. Let p ∈ N be a prime number. Recall that the p-adic integers Zp can be seen as the subspace{
(an)n∈N ∈

∏
n∈N

Z/pnZ : an+1 ≡ an (mod pn)

}
of the infinite product

∏
n∈N Z/pnZp carrying the induced topology. Note that each Z/pnZ

carries the discrete topology and
∏
n∈N Z/pnZ is endowed with the resulting product

topology.
(a). Show that the image of Z via the embedding

ι :Z→ Zp,

x 7→ (x (mod pn))n∈N

is dense. In particular, Zp is a compactification of Z.
(b). Show that the 2-adic integers Z2 are homeomorphic to the “middle thirds” cantor set

C as defined in Exercise 8. .
12. Let G be a topological group, X a topological space and µ : G × X → X a continuous

transitive group action.
a) Show that if G is compact then X is compact.
b) Show that if G is connected then X is connected.

13. Let G be a connected topological group, U ⊂ G an open neighborhood of the identity and
Un := {g1 · · · gn | g1, . . . , gn ∈ U}. Show that G =

⋃∞
n=1 U

n.
Hint: You may assume that g−1 ∈ U for every g ∈ U . Why?

14. Let H be a Hilbert space and U(H) its group of unitary operators. Show that the weak
operator topology coincides with the strong operator topology on U(H).

15. (a). Let us consider the three-dimensional Heisenberg group H = Roη R2, where
η : R→ Aut(R2) is defined by

η(x)

(
y

z

)
=

(
y

z + xy

)
,

for all x, y, z ∈ R. Thus the group operation is given by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2)
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and it is easy to see that it can be identified with the matrix group

H ∼=



1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


Verify that the Lebesgue measure is the Haar measure of R oη R2 and that the group
is unimodular.

(b). Let

P =

{(
a b

0 a−1

)
: a, b ∈ R, a 6= 0

}
.

Show that da
a2
db is the left Haar measure and da db is the right Haar measure. In

particular, P is not unimodular.
16. Let G be a locally compact Hausdorff group. Show that if H1 ≤ H2 ≤ G are closed

subgroups and H1,H2, G are all unimodular then there exist invariant measures dx, dy, dz
on G/H1, G/H2 and H2/H1 respectively such that

∫
G/H1

f(x)dx =

∫
G/H2

(∫
H2/H1

f(yz)dz

)
dy

for all f ∈ Cc(G/H1).
17. Let G = SL2(R) and P be the subgroup of upper triangular matrices. Show directly that

there is no (non-trivial) finite G-invariant measure on G/P .
Hint: Identify G/P ∼= S1 ∼= R ∪ {∞} with the unit circle and consider a rotation(

cos θ sin θ

− sin θ cos θ

)
and a translation (

1 t

0 1

)
.

18. Let D < Rn be a discrete subgroup. Show that there are x1, . . . , xk ∈ D such that
(a). x1, . . . , xk are linearly independent over R, and
(b). D = Zx1 ⊕ · · · ⊕ Zxk, i.e. x1, . . . , xk generate D as a Z-submodule of Rn.



Chapter 3 Lie Groups

p. 48 (first paragraph of chapter 3.2) It says there that one could consider the set of smooth
functions on U as a subset of the smooth functions on the whole manifold. (This is not true,
I mean 1/x is smooth on R r {0}, and cannot be extended to a smooth function on R.) I
had the feeling that, what this paragraph wanted to explain was that every function on U can
locally be seen as a function on M , that is the germs of the functions defined on the whole
of M are equal to the germs of the functions defined on U .

3.1 Definitions and Examples

Definition 3.1. (Lie Group)

♣

A Lie group G is a group endowed with the structure of a smooth (finite dimensional)
manifold with respect to which the group operations

G×G −→ G

(g, h) 7−→ gh

and
G −→ G

g 7−→ g−1

are smooth.

Remark Lie groups are locally compact Hausdorff (since they are manifolds) and have a dimension,
namely the dimension of the underlying manifold. We will only consider finite dimensional Lie
groups.

Example 3.1 (See Example 2.2) (Rn,+) is a Lie group.

Example 3.2 (See Example 2.4) The matrix group GL(n,R) is a Lie group. Note that for n = 1,
this is the group (R∗, ·), where R∗ = Rr {0}.

Example 3.3 (See Example 2.21) The one-dimensional torus T = {z ∈ C : |z| = 1} ∼= SO(2)
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is a Lie group.

Example 3.4 A finite direct product of Lie groups is a Lie group. It follows from the previous
example that the n-dimensional torus Tn is a Lie group.

Example 3.5 Countable discrete groups are Lie groups, as they are 0-dimensional manifolds. We
require them to be countable because we consider smooth manifolds to be second countable (see
Appendix A.3).

Example 3.6 (See Example 2.10) An inverse limit of discrete groups in general is not a Lie group.
Indeed, such a group is totally disconnected but not discrete, and thus its topology cannot be that
of a manifold. In particular, profinite groups are not Lie groups.

Example 3.7 (See Example 2.6) If X is a topological space, we have seen in Example 2.16 that
Homeo(X) is not necessarily locally compact, hence “too big” to be a Lie group.

Example 3.8 (See Example 2.7) If (X, d) is a locally compact metric space, we have seen in
Example 2.17 that Iso(X) is a locally compact topological group. It may or may not be a Lie
group. For example, if (X, d) = (Rn,deucl), then Iso(X) ∼= Rn o O(n,R). More generally, the
Myers–Steenrod Theorem, [6], states that the isometry group of a Riemannian manifold is a Lie
group.

Example 3.9 The groups Adet and N in Example 2.11 are Lie groups. The group Adet gets the
Lie group structure from the identification Adet ' ((R∗)n, ·). On the other hand we can give N
the structure of a smooth n(n−1)

2 -manifold coming from the homeomorphism N ' R
n(n−1)

2 , but,
as remarked in Example 2.11, this is not a (Lie) group homomorphism, unless n ≤ 2.

Example 3.10 Let V ⊂ Rn be a k-dimensional linear subspace, k < n, and let {y1, . . . , yn} be a
basis of Rn such that {y1, . . . , yk} ⊂ {y1, . . . , yk, yk+1, . . . yn} is a basis of V . With our choice
of basis we have:

StabGL(n,R)(V )

:={g ∈ GL(n,R) : gV ⊂ V }

=

{(
A B

0 C

)
∈ GL(n,R) : A ∈ GL(k,R), C ∈ GL(n− k,R), B ∈Mk×(n−k)

}
.

This is again a Lie group whose underlying manifold is diffeomorphic to GL(k,R)×GL(n−
k,R)×Rk×(n−k). As in the previous example, this diffeomorphism is not a group homomorphism.
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Definition 3.2. Lie group homomorphism

♣

A Lie group homomorphism is a group homomorphism between Lie groups that is also
smooth.

We will often write simply homomorphism if there is no risk of confusion.

It is easy to verify that all of the above examples are Lie groups. This is either because there is
an easy identification, as manifolds, to another Lie group, or because any open subset of a smooth
manifold is a smooth manifold with the induced structure. To treat other cases it will be useful to
have the following:

Theorem 3.1. Regular submanifold

♥

Let G be a Lie group and H < G a subgroup that is also a regular submanifold. Then H
is a Lie group with the induced smooth structure.

The proof of the theorem boils down do the fact that restriction of a smooth map in Rn to a
coordinate plane is again smooth.

Lemma 3.1

♥

Let M,M ′ be smooth manifolds, N ⊂ M a regular submanifold, and f : M ′ → M a
smooth map such that f(M ′) ⊂ N . Then f : M ′ → N is also smooth.

Remark [1, Remark 6.8] If N is not a regular submanifold then the lemma does not hold. For
example consider the setting of the Example A.2 and consider a map f : (−1, 1) → N such that
f(0) = 0 that sends the interval (0, 1) into the right upper branch of the arc with the clockwise
orientation and the interval (−1, 0) into the lower left branch with the counterclockwise orientation.
Then f is smooth as a map into M = R2, but it is not even continuous if thought of as a map
f : (−1, 1)→ N as the image of [0, 1/2] is disconnected.
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Then f is smooth as a function in M = R2 but not even continuous as a function in N .

Proof (Proof of Lemma 3.1)

Let p ∈ M ′ and f(p) =: q ∈ N . If (U,ϕ) is a coordinate neighborhood around q as in
Definition A.13, then if m = dimM > n = dimN , we have ϕ(U) = (−ε, ε)m, ϕ(q) = 0 ∈ Rm

and U ∩ N = {y ∈ U : ϕ(y) = (y1, . . . , yn, 0 . . . , 0)}. If (V, ψ) is a coordinate neighborhood
around p such that f(V ) ⊂ U and x1, . . . , xk are local coordinates in (V, ψ) for M ′, then the
expression of f : M ′ →M in local coordinates is:

ϕ ◦ f ◦ ψ−1(x1, . . . , xk︸ ︷︷ ︸
x

) = (f1(x), . . . , fn(x), 0, . . . , 0).

However the expression of f : M ′ → N in local coordinates is

ϕ ◦ f ◦ ψ−1(x1, . . . , xk︸ ︷︷ ︸
x

) = (f1(x), . . . , fn(x)) ,

that is the same expression followed by the projection Rn+(m−n) → Rn. Since f is smooth, the
proof is complete.

Proof (Proof of Theorem 3.1) Since H < G is a regular submanifold, H ×H ⊂ G × G is also
a regular submanifold. Therefore m : H × H → G is a smooth map taking values in H , hence
m : H ×H → H is also smooth, by Lemma 3.1. Similarly, inversion is smooth.

A very convenient way of determining whether a subset of a smooth manifold is a regular
submanifolds is by using the Inverse Function Theorem:
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Theorem 3.2. Inverse Function Theorem

♥

Let M,M ′ be smooth manifolds of dimension m and k respectively, and let f : M → M ′

be a smooth map such that its rank is constant onM , say rk f = l. Then for any q ∈ f(M),
f−1(q) ⊂M is a closed regular submanifold of dimension m− l.

Remark Recall that the rank of a smooth map f : M →M ′ at a point p ∈M is

(rk f)p := rk dfp = dim(Im dfp) .

If f : M → M ′ is a diffeomorphism, then the differential dpf at any point p ∈ M is an
isomorphism and hence (rk f)p ≡ dimM = dimM ′. The rank assumption in the Inverse
Function Theorem is essential: in fact for example any closed subset of Rn is the set of zeros of a
smooth function Rn → R.

The proof is a straightforward application of the rank condition, which gives the defining
property of a regular submanifold.

Proof

Let q ∈ f(M) and set N := f−1(q) ⊂ M . Then N is closed. Now let p ∈ N . Since rk f is
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constant there exist coordinate neighborhoods (U,ϕ) for p and (V, ψ) for q such that:

1. ϕ(p) = 0 ∈ Rm and ψ(q) = 0 ∈ Rk;
2. ϕ(U) = (−ε, ε)m and ψ(V ) = (−ε, ε)k;
3. ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = ((f1(x), . . . , fl(x), 0, . . . , 0).

This means that the points in U that map onto q (that is, the points of U ∩ N ) are exactly those
whose first l local coordinates are 0. So

N ∩ U = ϕ−1(ψ ◦ f ◦ ϕ−1)−1(0) = ϕ−1({x ∈ (−ε, ε)m : x1 = · · · = xl = 0}).

Thus N is a regular submanifold of M of dimension m− l.

Example 3.11 We want to show that SL(n,R) = {A ∈ GL(n,R) : detA = 1} = det−1(1)

is a Lie group, where det : GL(n,R) → R∗ is the usual determinant map. Since SL(n,R) is
a group and det is smooth, by Theorems 3.1 and 3.2 it suffices to check that the rank of det is
constant. GivenX ∈ GL(n,R), denote by LX : GL(n,R)→ GL(n,R) the left translation byX ,
Y 7→ XY and similarly, given x ∈ R∗, by lx : R∗ → R∗ the left translation by x, t 7→ xt. Notice
that they are both diffeomorphisms.

Now let A ∈ GL(n,R) and let a := detA ∈ R∗. The diagram

GL(n,R) det //

LA

��

R∗

la
��

GL(n,R)
det

// R∗

is commutative, so that det = la ◦ det ◦LA−1 . By the chain rule, since LA−1 and la are
diffeomorphisms, for every X ∈ GL(n,R)

rkX det = rkA−1X det

which is hence independent of A. By choosing A = X , we obtain rk dX det = rk dI det for all
X ∈ GL(n,R). This shows that the rank is constant.

One can verify that dI det = tr, the usual trace map Rn×n → R, and deduce that SL(n,R) is
a Lie group of dimension (n2 − 1). (Exercise 2.).

Example 3.12 We consider now the orthogonal group O(n,R) = {A ∈ GL(n,R) : tAA = I},
where tA is the transpose of A. If f : GL(n,R) → GL(n,R) is defined by f(X) = tXX , then
O(n,R) = f−1(I), so that, using again Theorems 3.1 and 3.2, it suffices to check that the rank of
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f is constant. We can show this in a way similar as for SL(n,R). In fact

f(XA−1) = (tA−1)(tX)XA−1 = L(tA−1) ◦RA−1 ◦ f(X),

so that f = L(tA−1) ◦ RA−1 ◦ f ◦ RA. Just like before we can show that rkX f = rkXA f is
independent of A and hence, taking A = X−1 it is constant and equal to rkI f .

Otherwise we could have computed the derivative directly:

dXf(Y ) =
d

ds

∣∣∣∣
s=0

t(X + sY )(X + sY ) =

=
d

ds

∣∣∣∣
s=0

(tXX + s tXY + s tY X + s2 tY Y ) = tXY + tY X.

In particular

dXf(
tX−1Z) = tX(tX−1Z) + t(tX−1Z)X = tXtX−1Z + tZX−1X = Z + tZ = dIf(Z),

thus independent of X .

To compute the dimension of O(n,R) we could use again Theorem 3.2, so that we need to
compute rkI f . We just saw that

dIf : Rn×n → Rn×n

X 7→ X + tX ,

that is Im dIf consists of the symmetric matrices. Since a symmetric matrix is determined by its
upper triangular part, the dimension of the image is 1+2+ · · ·+n = n(n+1)

2 . As a result O(n,R)
is a regular submanifold of GL(n,R) of dimension n2 − n(n+1)

2 = n(n−1)
2 .

We will later show the following powerful theorem:

Theorem 3.3. Closed Subgroup Theorem

♥Any closed subgroup of a Lie group is a Lie group.

3.2 General Facts About Lie Groups and Lie Algebras

LetM be a smooth manifold. We denote by C∞(M) the space of smooth R-valued functions
on M .
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Definition 3.3. (Linear differential operator)

♣

A linear operator D : C∞(M)→ C∞(M) is called a linear differential operator if:
1. For any open set U ⊂ M , and any smooth function on M with support in U , the

support of D(f) is in U , that is, D preserves the support of functions.
2. If U is an open set diffeomorphic to Rn, then, under identification with Rn, D takes

on U the form of a usual differential operator. Namely if f ∈ C∞(M) with support
in U , then

D(f) =
∑
|α|≤k

gαD
αf =

∑
|α|≤k

gα
∂|α|f

∂xα1 · · · ∂xαn
,

where gα ∈ C∞(M), α = (α1, . . . , αn) ∈ (N∪{0})n, n = dimM and |α| =
n∑
i=1

αi.

The order of a differential operator D is ord(D) := max{|α| : gα 6= 0}. It can be verified
that the order of a differential operator is independent of the choice of charts.

The space DiffOp(M) of linear differential operators onM is an algebra with composition as
a product, which satisfies ord(D1D2) ≤ ord(D1) + ord(D2).

We are now going to look at a notable vector subspace of DiffOp(M), show that it is not a
subalgebra and give it some weaker but essential structure. We will also see that one can do this
abstractly.

We denote by Vect(M) the space of smooth vector fields on M (See Definition A.11).

If U ⊂ M is open and f ∈ C∞(M) with support in U , then Xf , defined as above, has also
support in U . One can show that applying a vector field to a function at a point amounts to taking
the derivative of that function in the direction of the vector field at that point. It follows that vector
fields can be thought of as differential operators.

Proposition 3.1

♠

There is a bijection between Vect(M) and first order linear differential operators on M
that vanish on constant functions.

Remark If X,Y ∈ Vect(M), then in general ord(XY ) = 2, so XY is not a vector field.
Hence Vect(M) is a vector subspace of the algebra DiffOp(M), but not a subalgebra. On
the other hand XY − Y X is a vector field, since it vanishes on constant functions and
ord(XY − Y X) = ord(X) + ord(Y )− 1 = 1.

We want to give another structure to Vect(M), and we will view vector fields as derivations.
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It is convenient now to look at the abstract setting of which this will be an example.

Definition 3.4. Derivation

♣

Let K be a field, and let A be a K-algebra (not necessarily associative). Let

End(A) :={δ : A→ A preserving the K− module structure}

= {δ : A→ A : δ(a+ b) = δ(a) + δ(b) and

δ(λa) = λδ(a) for all a, b ∈ A, λ ∈ K}
An element δ ∈ End(A) is a derivation of A if

δ(ab) = δ(a)b+ aδ(b)

for all a, b ∈ A. We denote by Der(A) the set of derivations of the K-algebra A.

Example 3.13 The example to keep in mind is A := C∞(M). In fact, the space of smooth
functions on M form an R-algebra, and vector fields are derivations of C∞(M) because of the
Leibniz rule.

We want to give the set of derivations some structure. Let δ1, δ2 ∈ Der(A). Then
δ1 + δ2 ∈ Der(A) and λδ1 ∈ Der(A) for all λ ∈ R. Therefore Der(A) is a vector subspace
of End(A). However it is not a subalgebra with the product defined as the composition, since δ1δ2
is not necessarily a derivation. In fact:

δ1δ2(ab) = δ1(δ2(a)b+ aδ2(b)) =

= δ1δ2(a)b+ δ2(a)δ1(b) + δ1(a)δ2(b) + aδ1δ2(b).

But then

(δ1δ2 − δ2δ1)(ab) = δ1δ2(a)b+�����
δ2(a)δ1(b) +�����

δ1(a)δ2(b) + aδ1δ2(b)+

− δ2δ1(a)b−�����
δ1(a)δ2(b) −�����

δ2(a)δ1(b) − aδ2δ1(b) =

= δ1δ2(a)b+ aδ1δ2(b)− δ2δ1(a)b− aδ2δ1(b) =

= (δ1δ2 − δ2δ1)(a)b+ a(δ1δ2 − δ2δ1)(b).

Hence (δ1δ2− δ2δ1) ∈ Der(A). Let us introduce a notation for this: we define the bracket on
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Der(A) as follows:

[ · , · ] : Der(A)×Der(A) −→ Der(A)

(δ1, δ2) 7→ [δ1, δ2] := δ1δ2 − δ1δ2 .
The following properties are then immediate to verify. If δ1, δ2, δ3 ∈ Der(A),

1. [·, ·] is bilinear.
2. [δ1, δ2] = −[δ2, δ1].
3. [δ1, [δ2, δ3]] = [[δ1, δ2], δ3] + [δ2, [δ1, δ3]].

Recalling that Der(A) is only a vector space and not an algebra, we can extrapolate these
properties and define a new algebraic structure on any vector space.

Definition 3.5. Lie algebra

♣

A Lie algebra g over a field K is a K-vector space with a bilinear map [·, ·] : g × g → g

satisfying the following properties for all X,Y ∈ g:
1. [X,Y ] = −[Y,X].
2. [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] (Jacobi identity).

Remark The bracket is a sort of multiplication that is not associative. If it were, we would have
[X, [Y, Z]] = [[X,Y ], Z], instead of the Jacobi identity.

Notice that the Jacobi identity is nothing but the defining relation of the derivation δX : g→ g,
defined by

δX(Y ) := [X,Y ] .

where now we are thinking of a derivation of a Lie algebra (hence with respect to the Lie algebra
operation [ · , · ]) rather than of the derivation of an algebra (see § 4.1).

Example 3.14

1. Any associative algebra is a Lie algebra with [a, b] := ab− ba.
2. Vect(M) is a Lie algebra with [X,Y ]m(f) = Xm(Y f)− Ym(Xf).
3. Any vector space V is a Lie algebra with the bracket [v, w] = 0 for all v, v ∈ V .

Definition 3.6. Abelian Lie algebra

♣A Lie algebra g is called Abelian if [X,Y ] = 0 for all X,Y ∈ g.

4. The vector space Rn×n of real n × n matrices is a Lie algebra with [A,B] = AB − BA
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(this is a special case of the first item).
5. Let V be a two-dimensional vector space with basis {v, w}. Then we can define a bracket

on the elements of the basis by [v, v] = [w,w] = 0, [v, w] = −[w, v] = w and extend it by
linearity to obtain a Lie algebra.

6. R3 with the cross product is a Lie algebra.
7. Let V be a three-dimensional vector space with basis {u, v, w}. Define a bracket on the

elements of the basis by:

[u, u] = [v, v] = [w,w] = 0, [u, v] = w, [u,w] = −2u, [v, w] = 2v;

and extend it by linearity to obtain a Lie algebra. A matrix realization of this Lie algebra
can be obtained by setting

u =

(
0 1

0 0

)
, v =

(
0 0

1 0

)
, w =

(
1 0

0 −1

)
.

Related to the notion of Lie algebra there is also the notion of Lie subalgebra.

Definition 3.7. Lie subalgebra

♣

Let g be a Lie algebra. A vector subspace h ⊂ g is a Lie subalgebra if [X,Y ] ∈ h whenever
X,Y ∈ h.

Remark Just like the concept of Lie algebra is weaker than the concept of algebra, the concept of
Lie subalgebra is weaker than the concept of subalgebra.

Example 3.15

1. DiffOp(M) is an associative algebra (hence a Lie algebra) but we saw that Vect(M) is only
a Lie subalgebra and not a subalgebra:

Vect(M)︸ ︷︷ ︸
Lie subalgebra

⊂ DiffOp(M)︸ ︷︷ ︸
subalgebra

⊂ End(C∞(M))︸ ︷︷ ︸
algebra

.

2. In general Der(A) ⊂ End(A) is a Lie subalgebra but not a subalgebra.
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Definition 3.8. Lie algebra homomorphism

♣

Let g, h be Lie algebras. A Lie algebra homomorphism ϕ : g→ h is a linear map such that

[ϕ(X), ϕ(Y )]h = ϕ([X,Y ]g)

for all X,Y ∈ g.

Example 3.16 Let f :M →M ′ be a diffeomorphism. Define f∗ : Vect(M)→ Vect(M ′) by

(f∗X)m′ = (df−1(m′)f)Xf−1(m′). (3.1)

In other words, f∗X is the only vector field that makes the following diagram commute:

TM
df // TM ′

M

X

OO

f //M ′

f∗X

OO

Then it can be checked that f∗ is a Lie algebra homomorphism, that is f∗([X,Y ]) =

[f∗(X), f∗(Y )] for all X,Y ∈ Vect(M). See the Remark after Corollary 3.3 for a further
discussion.

3.3 Invariant Vector Fields: the Lie Algebra of a Lie Group

Definition 3.9. Smooth action

♣

A smooth action of a Lie group G on a smooth manifold M by diffeomorphisms is a group
homomorphism G→ Diffeo(M) such that the map

G×M →M

(g,m) 7→ gm

is smooth.

If G acts on M , then there is an induced action on Vect(M) and hence a homomorphism
G → End(Vect(M)) : g 7→ g∗ to the space of linear operators of the vector space Vect(M),
where g∗ is defined as for a general diffeomorphism in (3.1), namely (g∗X)m = dg−1mgXg−1m.
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Definition 3.10. Invariant vector field

♣

We say that the vector field X is invariant if g∗X = X for all g ∈ G. We denote by
Vect(M)G the space of invariant vector fields.

We saw in Example 3.16 that if f ∈ Diffeo(M), then f∗ ∈ L(Vect(M)) is a Lie
algebra homomorphism. Thus, for g ∈ G, g∗ is also a Lie algebra homomorphism; that is,
g∗([X,Y ]) = [g∗X, g∗Y ]. If moreover X,Y ∈ Vect(M)G, then

g∗([X,Y ]) = [g∗X, g∗Y ] = [X,Y ];

and so [X,Y ] ∈ Vect(M)G. Thus we have proven the following:

Lemma 3.2

♥Invariant vector fields form a Lie subalgebra of Vect(M).

We want to understand better Vect(M)G.

Proposition 3.2

♠

If G acts transitively on M and m0 ∈M , the evaluation map Em0 : Vect(M)G → Tm0M

is injective and linear. Thus Vect(M)G is identified with a linear subspace of Tm0M and
is hence finite-dimensional.

Remark We recall again that G acts transitively on M if for all m,m′ ∈ M there exists g ∈ G
such that gm = m′. For example if M = G, then G acts transitively and freely on itself, that is
the stabilizers of the action are trivial. However, if the element g ∈ G such that gm = m′ is not
unique, then there are non-trivial stabilizers Gm = {g ∈ G : gm = m} 6= {e}.

Proof The evaluation map Em0 , X 7→ Em0(X) := Xm0 ∈ Tm0M is clearly linear. It is defined
on all of Vect(M), but it is injective only on Vect(M)G. In fact, let X,Y ∈ Vect(M)G be such
that Xm0 = Ym0 . Let m ∈M , and let g ∈ G be such that gm0 = m. Then:

Xm = (g∗X)m = dg−1mgXg−1m = dm0gXm0 ;

Ym = (g∗Y )m = dg−1mgYg−1m = dm0gYm0 .

Since Xm0 = Ym0 , it follows that Xm = Ym. Since m was arbitrary, X = Y .

Corollary 3.1

♥If G acts transitively on M , then Vect(M)G is a finite-dimensional Lie algebra.

An important case of transitive action is the one above, where M = G.
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Definition 3.11. Lie algebra of a Lie group

♣

Let G be a Lie group. Then the Lie algebra of G, denoted by g (or L(G) or Lie(G)) is the
Lie algebra of left invariant vector fields on G.

We want to identify Vect(G)G better. So far we know that the evaluation map Ee :

Vect(G)G → TeG is injective, where e ∈ G is the identity.

Proposition 3.3

♠The evaluation map Ee : Vect(G)G → TeG is bijective.

We shall see in § 3.4 how much structure this bijection preserves.

Proof In view of Proposition 3.2 we only need to show that E is surjective. Given A ∈ TeG, we
extend A to the whole group by invariance. Namely, we define Ã ∈ Vect(G)G by

Ãg := ((Lg)∗A)g = dL−1
g gLg(AL−1

g g) = deLg(A);

where Lg : G→ G is the left translation diffeomorphism on G.

For a general transitive action of G on a manifold M , it is not true in general that there is a
unique element g such that gm0 = m. Then the statement of the previous proposition needs to be
modified a bit.

We saw that associated to an action ofG onM there is an action ofG onVect(M). Now we see
that there is also another action, the isotropy representation. Ifm0 ∈M andGm0 is the stabilizer in
G of m0, then Gm0 acts on Tm0M . In fact, if g ∈ Gm0 , then dm0g : Tm0M → Tgm0M = Tm0M

is a bijective linear map, so that it defines a homomorphism:

ρ : Gm0 → GL(Tm0M) : g 7→ dm0g.

Denote by Tm0M
ρ(Gm0 ) the Gm0-invariant vectors in Tm0M , that is the vectors v ∈ Tm0M such

that ρ(g)v = dm0gv = v for all g ∈ Gm0 .

Proposition 3.4

♠If G acts transitively on M , there is an identification Em0 : Vect(M)G → Tm0M
ρ(Gm0 ).

Proof By definition, if X ∈ Vect(M)G, then Em0(X) = Xm0 ∈ Tm0M
ρ(Gm0 ). To find

the inverse, let v ∈ Tm0M
ρ(Gm0 ) and, given m ∈ M , let g ∈ G be such that gm0 = m.

Define then Xm := dm0gv ∈ TmM . To see that this is well-defined, let g′ ∈ G be
such that g′m0 = m, so that g−1g′ ∈ Gm0 . We need to see that dm0gv = dm0g

′v, that
is that v = (dm0g)

−1(dm0g
′)v = dm0(g

−1g′)v, which holds true since g−1g′ ∈ Gm0 and
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v ∈ Tm0M
ρ(Gm0 ).

Example 3.17 We saw in Example 2.27 that SO(3,R) acts transitively on S2, SO(3,R)e3 = S2.
Moreover the stabilizer of e3 can be identified with SO(2,R). Thus Vect(S2)SO(3,R) ∼=
(Te3S

2)ρ(SO(2,R)). However, identifying the tangent plane at e3 with the xy-plane, one sees
that the action of SO(2,R) is by rotations. Thus the only tangent vector at e3 that is invariant under
the isotropy representation is the zero vector, hence there are no SO(3,R)-invariant vector fields
on S2, and no O(3,R)-invariant vector fields on S2.

3.4 Characterization of the Lie Algebra of a Lie Group

Let G be a Lie group. We defined its Lie algebra g as Vect(G)G with the bracket operation.
Since Vect(G)G ∼= TeG by Proposition 3.3, we want to endow TeG with a bracket operation so
that this vector space isomorphism is a Lie algebra isomorphism.

If G = GL(n,R), then tangent space TI GL(n,R) is isomorphic as a vector space to Rn×n.
However Rn×n is an algebra with the usual bracket [A,B] = AB − BA (Example 3.14), which
thus induces a bracket on TeG.

Proposition 3.5

♠

The vector space isomorphism Rn×n ∼= TI GL(n,R)) → Vect(GL(n,R))GL(n,R) is a Lie
algebra isomorphism, where the bracket in TI GL(n,R) is the one coming from the algebra
structure on Rn×n.

Corollary 3.2

♥

The Lie algebra gl(n,R) of GL(n,R) is isomorphic to Rn×n with the usual bracket of
matrices.

Proof If A ∈ Rn×n, let AI ∈ TI GL(n,R) be the matrix A thought of as a tangent vector
at I ∈ GL(n,R), and let Ã ∈ Vect(GL(n,R))GL(n,R) be the invariant vector field obtained by
spreading AI around using invariance:

Rn×n ∼= TI GL(n,R) f−→ Vect(GL(n,R))GL(n,R)

A ↔ AI 7→ Ã
.

We want to show that f([A,B]) = [f(A), f(B)], that is:

[̃A,B] = [Ã, B̃] (3.2)
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where [A,B] is the bracket in Rn×n and [Ã, B̃] is the bracket in Vect(GL(n,R))GL(n,R).

First reduction. The equality (3.2) must hold everywhere onGL(n,R). HoweverVect(GL(n,R))GL(n,R)

is a Lie algebra, so that the bracket of two invariant vectors is invariant. Thus [̃A,B] and [Ã, B̃]

are both invariant vector fields, and hence it suffices to prove the assertion at the identity, that is:

([̃A,B])I = ([Ã, B̃])I . (3.3)

Second reduction. To show the equality (3.3) in TI GL(n,R) it is enough to show that if
λ : TI GL(n,R) → R is a linear functional, since linear functionals separate points, then
λ(([̃A,B])I) = λ(([Ã, B̃])I). By our correspondence, if X ∈ TI GL(n,R), then (X̃)I = X ,
so we need to show that λ([A,B]) = λ([Ã, B̃]I). But [A,B] is the bracket in Rn×n, hence it is
enough to show:

λ([Ã, B̃]I) = λ(AB)− λ(BA) . (3.4)

Remark If L : Rm → Rk is a linear map, then its derivative dL : TRm → TRk is such that for
every x ∈ Rm, dxL : TxRm → TL(x)Rk can be identified with dxL : Rm → Rk and in fact with
L : Rm → Rk. In other words the map

Rn → End(Rm,Rk)
x 7→ dxL

is constant and identically equal to L.

We can hence think of L as its own derivative.

Third reduction. Given λ : TI GL(n,R) = Rn×n → R, then

λ([Ã, B̃]I) = dIλ([Ã, B̃]I) = [Ã, B̃]I(λ) = ÃI(B̃(λ))(I)− B̃I(Ã(λ))(I).

By putting this together with (3.4), we are left to show that

λ(AB)− λ(BA) = Ã(B̃(λ))(I)− B̃(Ã(λ))(I).

We will show that λ(AB) = ÃI(B̃(λ)), which concludes the proof.

ÃI(B̃(λ)) = ÃI(g 7→ B̃g(λ))
(1)
= ÃI(g 7→ (dILg)BI(λ))

(2)
= ÃI(g 7→ (dgλ)(dILg)BI)

= ÃI(g 7→ dI(λ ◦ Lg)BI)
(3)
= ÃI(g 7→ (λ ◦ Lg)(B)) = ÃI(g 7→ λ(gB))

(4)
= λ(AB) ,

where we used
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– in (1) that B̃ is invariant;
– in (2) the interpretation in (A.1) of the action of the vector field (dILg)BI on the function λ;
– in (3) the above remark, and
– in (4) the fact that the map F : g 7→ λ(gB) is linear in g for a fixedB and hence, again using

the above remark and since ÃI = a„ ÃI(F ) = dIF (AI) = F (AI) = λ(AB).

We want to find now a way of identifying the Lie algebra structure of a Lie subalgebra of
gl(n,R). We want to see that, in fact, even for a subalgebra of gl(n,R), we can use the matrix
bracket.

Proposition 3.6

♠

If ϕ : G → H is a Lie group homomorphism, then deϕ : g → h is a Lie algebra
homomorphism.

Corollary 3.3

♥

If i : G→ H is ain injective smooth homomorphism of Lie groups, then dei : TeG ↪→ TeH

is an inclusion of tangent spaces that defines a Lie algebra embedding g ↪→ h.

It follows that if H ≤ GL(n,R) is a Lie group, then the bracket on h is the one coming from
gl(n,R).

In order to prove the proposition we need some preliminary remarks:

Remark

1. The differential is a local definition in the following sense. Let M,M ′ be smooth manifolds
and ϕ : M → M ′ a smooth map. If X ∈ Vect(M), then in general dϕ(X) does not define
a vector field on M ′. In fact ϕ(M) might not be the whole of M ′. However even if it
were, dpϕ(Xp) is a tangent vector at ϕ(p) that is however not necessarily uniquely defined,
if for example there exists q ∈ M such that ϕ(p) = ϕ(q) but dpϕ(Xp) 6= dqϕ(Xq). We
say that X ∈ Vect(M) and X ′ ∈ Vect(M ′) are ϕ-related if X ′ ◦ ϕ = dϕ ◦ X , that is if
X ′
φ(m) = dmϕ(Xm) for all m ∈M :
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TM
dφ // TM ′

M

X

OO

φ //M ′

φ∗X

OO

It is easy to verify that if Xi ∈ Vect(M) is ϕ-related to X ′
i ∈ Vect(M ′), for i = 1, 2, then

[X1, X2] is ϕ-related to [X ′
1, X

′
2]. (Exercise 4.)

Of course, because of Proposition 3.6, the above remark does not apply to homomorphisms
between Lie groups and to left invariant vector fields. In fact we record the following fact:

Lemma 3.3

♥

Let G,H be Lie groups with Lie algebras Lie(G) = g and Lie(H) = h. Let
ϕ : G → H be a Lie group homomorphism. Then the left invariant vector fields
defined by X ∈ g and deϕ(X) ∈ h are ϕ-related for all X ∈ g.

So the property of being ϕ-related is in some sense a generalization of the property of being
left invariant, in the sense of the following remark.

2. A vector field X ∈ Vect(G) is left invariant if and only if it is Lg-related to itself. In fact,

X is Lg-related to itself ⇐⇒ X ◦ Lg = dLg ◦X ⇐⇒ X ◦ Lg(h) = dLg(X)(h) for all h ∈ G

⇐⇒ Xgh = dhLgXh for all h ∈ G ⇐⇒ X is left invariant .

3. If ϕ : G → H is a homomorphism, then for all g, h ∈ G we have ϕ(gh) = ϕ(g)ϕ(h) ⇒
ϕ(Lgh) = Lφ(g)ϕ(h) and so ϕ ◦ Lg = Lφ(g) ◦ ϕ for all g ∈ G.

Proof [Proof of Proposition 3.6]) We use the notation X := dϕ(X). It will then be enough to
show that X and X are ϕ-related. In fact, by 1. we have that [X,Y ] and [X,Y ] are ϕ-related, that
is

dϕ ◦ [X,Y ] = [X,Y ] ◦ ϕ = [dϕ(X), dϕ(Y )] ◦ ϕ .

This is true at every point g ∈ G and in particular at g = eG. Since ϕ(eG) = eH , the assertion
follows. So we only have to show that X and X are ϕ-related, that is Xφ(g) = dgϕ(X) for all
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g ∈ G. But

Xφ(g)
(1)
= deHLφ(g)XeH

(2)
= deHLφ(g)deGϕ(XeG)

= deG(Lφ(g) ◦ ϕ)(XeG)
(3)
= deG(ϕ ◦ Lg)(XeG)

= dgϕ(X)(g) ,

where we used in (1) the fact the invariance of X , in (2) its definition and in (3) 3..

We can now compute some Lie algebras.

Example 3.18 SL(n,R) = {g ∈ GL(n,R) : det(g) = 1}. So if γ : (−ε, ε) → SL(n,R) is a
smooth curve, then det(γ(t)) ≡ 1, and so d

dt det(γ(t)) ≡ 0. If moreover γ is chosen so that
γ(0) = I , and so γ′(0) ∈ TI SL(n,R) = sl(n,R), then by the chain rule and by Exercise 4.:

0 =
d

dt

∣∣∣∣
t=0

det γ(t) = dγ(0) det γ
′(0) = dI det γ

′(0) = tr(γ′(0)).

Thus sl(n,R) ⊆ {A ∈ gl(n,R) : tr(A) = 0}. But since dim sl(n,R) = dim{A ∈ gl(n,R) :

tr(A) = 0} = n2 − 1, then equality holds.

In many cases it will be useful to have the following:

Lemma 3.4

♥

LetA,B : (−ε, ε)→ Rn×n be smooth curves and let us define ϕ(s) := A(s)B(s) ⊂ Rn×n.
Then

ϕ′(s) = A′(s)B(s) +A(s)B′(s).

Proof [Hint of the proof] Write in coordinates and mimic the proof of the product rule forR-valued
functions, where one uses only that R is an algebra and not necessarily a commutative one.

Example 3.19 O(n,R) = {g ∈ GL(n,R) : tgg = I}. If γ : (−ε, ε) → O(n,R) is a smooth
curve then tγ(s)γ(s) ≡ I . If γ(0) = I , then

0 =
d

ds

∣∣∣∣
s=0

(tγ(s)γ(s)) = tγ′(0)γ(0) + tγ(0)γ′(0) = tγ′(0) + γ′(0).

Thus Lie(O(n,R)) = o(n,R) ⊆ {A ∈ gl(n,R) : tA + A = 0} is the space of skew-symmetric
matrices. As before, by checking the dimensions one sees that this is an equality.

Example 3.20 O(p, q) = {g ∈ GL(n,R) : gJ tg = J}, where J =

(
−Ip 0

0 Iq

)
. Let

γ : (−ε, ε) → O(p, q) be a smooth curve with γ(0) = I . Then with the same procedure as
above one concludes that Lie(O(p, q)) = o(p, q) = {A ∈ gl(p + q,R) : AJ + J tA = 0}. If we
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write matrices in block form we deduce that

o(p, q) =

{(
o(p,R) A

tA o(q,R)

)
: A is a p× q matrix

}
.

Example 3.21 N1 =



1 ∗

. . .

0 1

 ∈ GL(n,R)

, then n1 =



0 ∗

. . .

0 0

 ∈ gl(n,R)

.

Example 3.22Adet =



λ1 0

. . .

0 λn

 : λi 6= 0

, thenadet =



λ1 0

. . .

0 λn

 : λi ∈ R

.

Example 3.23 Let U(n) = {A ∈ GL(n,C) : AtA = I} be the group of unitary matrices. Then
u(n) = {A ∈ gl(n,C) : A+ tA = 0}, the group of skew-Hermitian matrices.

Example 3.24 If

Sp(2n,C) = {A ∈ GL(2n,C) : tAFA = F} ,

where F =

(
0 In

−In 0

)
, and Sp(2n,R) = Sp(2n,C) ∩GL(2n,R), then

sp(2n,C) = {A ∈ gl(2n,C) : tAF + FA = 0} (3.5)

and sp(2n,R) = sp(2n,C) ∩ gl(n,R).

We just proved that if ϕ : G → H is a Lie group homomorphism, then dϕ : g → h is a Lie
algebra homomorphism. In order to have a correspondence between Lie groups and Lie algebras
that is as complete as possible, we would like to have the converse of this statement. However,
given a Lie group G we have defined its Lie algebra g, but we have not proven that given a Lie
algebra g there is a Lie groupG that “integrates” g (that is such that Lie(G) = g). So the converse
of Proposition 3.6 entails two different questions:

1. Given a Lie groupG with Lie algebra g and given a subalgebra h ⊂ g, is there a “subgroup”
H ≤ G such that Lie(H) = h?

2. If G,H are Lie groups and π : g → h is a homomorphism of their Lie algebras, does there
exists a Lie group homomorphism ϕ : G→ H such that deϕ = π?
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Definition 3.12

♣

If g, h are Lie algebras, the product g × h has the Lie algebra structure defined by
[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2]) for all X1, X2 ∈ g and all Y1, Y2 ∈ h.

Example 3.25 Let G = T2 = S1 × S1. Since R2 → T2 is a covering map, g = Lie(G) =

T0 T2 = T0R2 = R× R.

1. Let h = R ' {0} × R. It is immediate that h is a Lie subalgebra of g and if i : S1 → T2

is defined as i(S1) := {0} × S1, then Lie(i(S1)) = h. (In this case we do not even need
Definition 3.12 as g is Abelian and hence the bracket is trivial. See Corollary 3.6.)

2. Let h = {(x, y) ∈ R2 : y =
√
2x}. Let ϕ : R→ T2 be defined as ϕ(t) = (eit, ei

√
2t). Then

ϕ is an injective smooth homomorphism such that ϕ(R) =: H is a subgroup of T2 with Lie
algebra h.

It is clear that we cannot expect that the subgroup H will be more than an immersed
submanifold. In fact we have:

Theorem 3.4. Lie group - Lie algebra correspondence

♥

If G is a Lie group with Lie algebra g and h ⊂ g is a Lie subalgebra, then there exists a
unique immersed connected Lie subgroup H < G with Lie algebra h.

The proof will rely on Frobenius’ Theorem, which we introduce with an example.

IfM is a smooth manifold, p ∈M andX ∈ Vect(M), the theorem of existence and uniqueness
of solutions of ODEs assures that there exists an ε > 0 and a smooth curve γp : (−ε, ε)→M such
that γp(0) = p and γ′p(t) = Xγp(t) for all t ∈ R. The curve γp is called integral curve of X , it is
an immersed submanifold and has the property that its tangent space is spanned by X .
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Suppose instead now to have two vector fields, X1, X2 ∈ Vect(M) and to look for a surface
whose tangent space at every point is spanned byX1 andX2. Now this amounts to solving a linear
system of PDEs and a solution in a neighborhood of a point p ∈M will be a surface whose tangent
space at every point q ∈ M “close enough” to p is spanned by X1 and X2. One possible way of
finding such a surface is to consider the integral curve γ1,p of X1, move along such a curve for a
small amount of time, then move along the integral curve γ2,p of X2. If such a surface exists, its
tangent subspace at q will certainly contain X2, but will have lost memory of X1. Likewise, we
could have started following first X2 and then X1 and now the tangent space to this hypothetical
surface will contain X1 and will have lost memory of X2. It is clear that X1 and X2 must satisfy
some relationship if we want the surface and its tangent space to be defined.

Definition 3.13. Distribution

♣

1. Let M be a manifold of dimension n + k and for each p ∈ M consider an n-
dimensional subspace Dp ⊂ TpM . Suppose that in a neighborhood U of any point
p ∈M there are n linearly independent smooth vector fields X1, . . . , Xn that give a
basis of Dq for all q ∈ U . We then say that D is a smooth distribution of dimension
n on M and that X1, . . . , Xn is a local basis of D.

2. We say that a distribution is involutive if there exists a local basis X1, . . . , Xn of D
such that [Xi, Xj ] ∈ D for all 1 ≤ i, j ≤ n.

3. If D is a smooth distribution and ϕ : N →M is a one-to-one immersion, we say that
ϕ(N) is an integral submanifold of D if dpϕTpN ⊂ Dφ(p).

4. We say that a distribution D on M is completely integrable if through each point in
M there is an integral submanifold ϕ : N → M such that dpϕTpN = Dφ(p) for all
p ∈ N .

From the above discussion it should be clear that finding conditions for the existence of integral
submanifolds amounts to finding conditions for the existence of solutions to linear systems of PDEs.

Proposition 3.7

♠Any completely integrable distribution is involutive.

Example 3.26

1. If M = Rn × Rk and Xi =
∂
∂xi

for i = 1, . . . , n, then D = {X1, . . . , Xn} is an involutive
distribution.
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2. The Lie algebra h of a Lie subgroup H of a Lie group G defines a left invariant involutive
distribution.

3. All distributions on a two-dimensional manifold are involutive. However in higher dimension
most distributions are not involutive. For example onR3 the distributionD = { ∂∂x ,

∂
∂y+x

∂
∂z}

is not involutive since
[
∂
∂x ,

∂
∂y + x ∂

∂z

]
= ∂

∂z .

Frobenius showed that being involutive is not only a necessary condition but also a sufficient
one.

Theorem 3.5. (Frobenius)

♥

A smooth distribution D on a manifold M is completely integrable if and only if it is
involutive.

Remark If the distribution has dimension 1, then this is nothing but the theorem on existence
(and uniqueness) of solutions of a PDE. In this case an integral curve is an integral manifold. In
dimension one however the necessary condition of being involutive is automatically satisfied since
[X,X] = 0 for any vector field X .

Definition 3.14. Maximal integral submanifold

♣

A maximal integral submanifold N of an involutive distribution D on a manifold M is a
connected integral manifold of D whose image in M is not a proper subset of any other
connected integral manifold of D. In other words, it is a connected integral manifold that
contains any connected integral manifold with which it shares a point.

Theorem 3.6

♥

Given an involutive distribution on a manifold M and a point p ∈M , there exists a unique
maximal integral manifold through p.

For a proof of this and of Frobenius’ Theorem, see for example [11].

Existence follows from the fact that in the Frobenius Theorem one can show that if the n-
dimensional distribution is involutive and p ∈ M is a point through which the integral manifold
passes, then there exists a coordinate neighborhood (U,ϕ) with U = (−ε, ε)n+k centered at p,
such that the integral manifold has shape xi = constant for n ≤ i + 1 ≤ (n + k). One uses this
coordinate neighborhood and the fact that M is second countable to patch the local “slices” of the
integral manifolds to show the existence of a maximal one.
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Recall from Lemma 3.1 that if a smooth map takes values in a regular submanifold N of a
manifold M , then the same map thought as a map to N is also smooth. The same statement can
be made for integral sumbanifolds of an involutive distribution.

Proposition 3.8

♠

Let D be an involutive distribution on M and let N be a maximal integral submanifold. If
f : M ′ →M is a smooth map and f(M ′) ⊂ N , then f : M ′ → N is also smooth.

Proof Adapt the proof for regular submanifolds in Lemma 3.1 (Exercise 5.).

We can finally prove Theorem 3.4.

Proof LetX1, . . . , Xn be left invariant vector fields that form a basis for h. Since h is a Lie algebra,
everyX ∈ h defines aG-left invariant vector field onG. Thus the distributionD = {X1, . . . , Xn}
is involutive and invariant under left translation by G. It follows that if N is an integral manifold
of D, then Lg(N) is also an integral manifold of D for all g ∈ G. Let H be the unique maximal
integral manifold through e. If h ∈ H , then Lh−1h = e hence both H and Lh−1H are maximal
integral manifolds through e. By uniqueness Lh−1H = H and so h−1h′ ∈ H for all h′ ∈ H ,
that is H is a subgroup of G, as well as an immersed submanifold. Moreover since the maps
H × H → G, (h, h′) 7→ hh′ and H → G, h 7→ h−1 are smooth and take values in H , by the
previous proposition the maps H ×H → H and H → H are smooth as well. Hence H is a Lie
group, whose Lie algebra is h by construction. The uniqueness follows from the uniqueness of the
maximal integral manifold.

One can generalize the above result.

Definition 3.15. Lie subgroup

♣

Let G be a Lie group. We say that (H,ϕ) is a Lie subgroup of G if
1. H is a Lie group;
2. ϕ : H → G is an injective Lie group homomorphism;
3. ϕ(H) is an immersed submanifold, meaning ϕ is a one-to-one immersion.

Theorem 3.7. Lie group - Lie algebra correspondence II

♥

LetG be a Lie group with Lie algebra g and h̃ ⊂ g a subalgebra. Then there exists a unique
connected Lie subgroup (H,ϕ) of G such that dϕ(h) = h̃, where h is the Lie algebra of H .

We have however seen that the topology of a Lie subgroup does not necessarily come from
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the topology of the ambient group. The following result tells us exactly when a Lie subgroup has
the relative topology:

Theorem 3.8. Embedded Lie subgroups

♥

Let (H,ϕ) be a Lie subgroup of a Lie groupG. Then ϕ is an embedding if and only if ϕ(H)

is closed in G.

We now move to the question of whether any Lie algebra homomorphism is the differential of
a Lie group homomorphism.

Example 3.27 Let ϕ : R → S1 be defined as t 7→ eit. Then d0ϕ : Lie(R) → Lie(S1) is a Lie
algebra isomorphism, and so is (d0ϕ)−1 : Lie(S1) → Lie(R). If (d0ϕ)−1 were the derivative of
a homomorphism ψ : S1 → R, then ψ(S1) would be a one-dimensional compact subgroup of R.
This is impossible since the only compact subgroup of R is the trivial one. Hence (d0ϕ)

−1 does
not come from a homomorphism. It does, however, come from a local homomorphism, namely
the local inverse of ϕ.

We gave in Chapter 2 the definition of local homomorphism of topological groups. In the
category of Lie groups the definition of local homomorphism has to be modified in that they are
smooth maps (see also Theorem 3.14).

Theorem 3.9. From Lie algebra homomorphisms to local homomorphisms

♥

1. If G,H are Lie groups and π : g → h is a Lie algebra homomorphism of the
corresponding Lie algebras, then there exists a local homomorphism ϕ : U → H

such that deϕ = π.
2. If π is a Lie algebra isomorphism then ϕ is a local isomorphism.

The proof of the second assertion follows immediately from the first one together with the
following easy application of the Inverse Function Theorem, that will also be needed in the proof
of the first assertion.

Lemma 3.5

♥

If ϕ : U → H is a local homomorphism of Lie groups such that deϕ : g → h is an
isomorphism, then ϕ is a local isomorphism.

Proof Let U be a neighborhood of e ∈ G such that ϕ is defined on U . Since deϕ is bijective,
by the Inverse Function Theorem there exists a neighborhood U ′ of eG ∈ G and a neighborhood



3.4 Characterization of the Lie Algebra of a Lie Group – 71 –

V of eH ∈ H such that ϕ : U ′ → V is a diffeomorphism. But then ϕ is a local isomorphism on
U ∩ U ′.

Proof [Proof of Theorem 3.9] The important point is that, since π is a Lie algebra homomorphism,
Graph(π) is a Lie subalgebra of g× h. Indeed:

[(X,π(X)), (Y, π(Y ))] = ([X,Y ], [π(X), π(Y )]) = ([X,Y ], π([X,Y ])).

By Theorem 3.4 this implies that there exists a subgroup K < G × H such that Lie(K) =

Graph(π).

So far we have:

Graph(π) �
� //g× h

deprG //g

and

K � � //G×H
prG //G

Recall that we want to have a homomorphism from G, but here we have a homomorphism
to G. By construction prG|K : K → G is a Lie group homomorphism and its derivative
de(prG|K) = prg|Graph(π) : Graph(π) → g is a Lie algebra isomomorphism. Hence, by the
previous lemma, prG|K is a local isomorphism, that is, there exist neighborhoods eK ∈ W ⊂ K

and eG ∈ V ⊂ G such that prG|W : W → V is an isomorphism. We consider then
(prG|W )−1 : V → W , whose derivative de(prG|W )−1 : g → Graph(π) is X 7→ (X,π(X)),
by definition.

We consider now the homomorphism prH : G × H → H and its derivative deprH =

prh : g× h→ h, which is a Lie algebra homomorphism. Then prH ◦ (prG|W )−1 : V → H is the
required local homomorphism, since

deG(prH ◦ (prG|W )−1)(X) = deGprH ◦ (deGprG|W )−1(X) = deGprH(X,π(X)) = π(X).

We remark again that the local homomorphism given by the theorem comes from the
application of the Inverse Function Theorem in the previous lemma.

Theorem 3.10. (Ado)

♥

Any finite-dimensional real Lie algebra g is isomorphic to a subalgebra of gl(n,R) for some
n.

The proof relies on the structure theory of Lie groups that we will see in the next chapter. We
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will give at that point a rough idea of the proof. Together with Theorem 3.9, this implies:

Corollary 3.4

♥Any Lie group G is locally isomorphic to a subgroup of GL(n,R) for some n.

Remark This result, seemingly very useful, is in practice not so. For example if we wanted to use
the matrix bracket, we would need to know what is the n such that g ↪→ gl(n,R). Moreover the
group G that we obtain might have a pretty ugly topology. However, together with the following
corollary, which is an immediate consequence of Theorem 3.9, it will tell us for example under
which conditions a Lie group can be isomorphic to a subgroup of GL(n,R).

Corollary 3.5

♥

1. If G is a connected Lie group with Lie algebra g, there exists a simply connected Lie
group G̃ with Lie algebra isomorphic to g.

2. If two simply connected Lie groups have isomorphic Lie algebras, then they are
isomorphic.

3. Given two isomorphic Lie algebras g1 ' g2, there exists simply connected isomorphic
Lie groups G̃i with Lie(G̃i) = gi, for i = 1, 2. In other words, there is a one-to-
one correspondence between isomorphism classes of Lie algebras and isomorphism
classes of simply connected Lie groups.

Proof (1) Using covering theory it is easy to show that if G is a connected Lie group, H a
topological group and p : H → G a covering map, then there exists a unique Lie group structure
on H such that p is a Lie group homomorphism and the kernel of p is a discrete subgroup of H .
(See Exercise 6.)

(2) Let G̃1 and G̃2 be simply connected Lie groups with g1 ' g2. By Theorem 3.9 there is a
local isomorphism p : U → G̃2. Since G̃1 is simply connected, by Theorem 2.1 p extends to a
homomorphism G̃1 → G̃2. Since this is also a covering map and G̃2 is simply connected, we have
G̃1 ' G̃2.

(3) Let g1 ' g2. By Ado’s Theorem there exists a Lie group Gi (locally isomorphic to a subgroup
of GL(ni,R)) with Lie(Gi) = gi, for i = 1, 2. Let G̃i be the universal covering. By (1) and (2) it
follows that G̃1 ' G̃2.

We conclude now with some easy consequences of the correspondence between Lie groups
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and Lie algebras.

Corollary 3.6. Abelian Lie groups and Lie algebras

♥

Let G be a connected Lie group with Lie algebra g. Then G is Abelian if and only if g is
Abelian.

Proof (⇒) If G is Abelian, then Inv : G → G : g 7→ g−1 is a homomorphism (in fact, this
condition is equivalent to being Abelian), so deInv : g → g is a Lie algebra homomorphism by
Proposition 3.6. We claim that deInv = −Id. Assuming this (which we will verify later), for all
X,Y ∈ g:

−[X,Y ] = deInv([X,Y ]) = [deInv(X), deInv(Y )] = [−X,−Y ] = [X,Y ].

Therefore [X,Y ] = 0 and so g is Abelian.

To show the claim, letϕ : (−ε, ε)→ G be a path such thatϕ(0) = e and letψ(t) := Inv(ϕ(t)).
Then ψ(0) = e and e = ϕ(t)ψ(t), so that

0 =
d

dt

∣∣∣∣
t=0

ϕ(t)ψ(t) = ϕ′(0)ψ(0) + ϕ(0)ψ′(0) = ϕ′(0) + ψ′(0).

If ϕ′(0) = X ∈ g, then 0 = X + deInv(X), which concludes the proof of the claim.

(⇐) Suppose that g is an Abelian Lie algebra, that is, it is isomorphic to the Lie algebra of
Rn for some n. Then G is locally isomorphic to Rn, that is, it is locally Abelian. But then G is
Abelian by Proposition 2.1. 7.

Corollary 3.7. Classification of connected Abelian Lie groups

♥

1. Any connected Abelian Lie group G is isomorphic to Tk × Rl for some k, l ≥ 0.
2. Any compact connected Abelian Lie group is isomorphic to Tk for some k ≥ 0.
3. Any simply connected Abelian Lie group is isomorphic to Rl for some l ≥ 0.

Proof It will be enough to prove 1. and the other two statements will follow immediately. To this
end, remark that the Lie algebra of G is isomorphic to the Lie algebra of Rn for some n. Hence
by Theorem 3.9 there is a local isomorphism ϕ : U0 → G for some open neighborhood U0 ⊂ Rn

of the origin. Since Rn is simply connected, Theorem 2.1 asserts that ϕ can be extended to a
homomorphism ϕ : Rn → G.

We claim that kerϕ is discrete. In fact, since deϕ is an isomorphism, there exists a
neighborhood e ∈ Ue ⊂ G such that ϕ : U0 → ϕ(U0) ∩ Ue is a diffeomorphism. Then
kerϕ ∩ U0 = {0} and so {0} is open in kerϕ. Since it is also closed, it is discrete. Thus
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there exist x1, . . . , xk ∈ kerϕ linearly independent over R, such that kerϕ is the Z-span of
x1, . . . , xk. (See Exercise 9.) Let V be the R-span of x1, . . . , xk. Then dimV = k and we can
write Rn = V ⊕W , where dimW = (n − k). Now ϕ : V ⊕W → G is surjective, because
G =

∞⋃
n=1

(ϕ(U0) ∩ Ue)n by Proposition 2.1 7. Therefore

G ∼= V ⊕W/ kerϕ = V/ kerϕ⊕W ∼= (R/Z)k × Rn−k = Tk × Rn−k.

3.5 The Exponential Map

p. 96 Let G be a Lie group and g its Lie algebra. We introduce the exponential map of g into
G and study some of its properties. IfG = GL(n,R) or one of its subgroups, then we will see that
the exponential map coincides with the normal matrix exponential (from which the name follows).
The exponential map is probably the most important basic construction associated to g and G, as
many important results in the general theory of Lie groups and Lie algebras depend in one way or
another on the properties of this map.

Definition 3.16. One-parameter subgroup

♣

Let G be a Lie group. A one-parameter subgroup of G is a Lie group homomorphism
ϕ : R→ G (i.e., a smooth curve that is also a homomorphism).

Why would one-parameter subgroups exist? Let G be a Lie group with Lie algebra g, let
X ∈ g and consider the Lie algebra homomorphism

Lie(R)→ g

t 7→ tX

By Theorem 3.9 there exists a local homomorphism that, since R is simply connected, according
to Theorem 2.1 can be extended uniquely to a Lie group homomorphism ϕX : R → G with the
property that d0ϕX(t) = tX .

Definition 3.17. Exponential map

♣

The exponential map of the Lie group G is defined by

expG : g→ G

X 7→ ϕX(1) .
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PICTURE

If X ∈ g we denote by X̃ ∈ Vect(G)G be the left invariant vector field with X̃e = X .

Proposition 3.9. Properties of the exponential map

♠

Let G be a Lie group with Lie algebra g and let X ∈ g.
1. ϕX is an integral curve of X̃ and the only one for which ϕX(0) = e.

More generally, LgϕX : R→ G is the only integral curve of X̃ that goes through g at
0. In particular left invariant vector fields are always complete (that is, their integral
curves are defined for all t ∈ R).

2. exp(tX) = ϕX(t) for all t ∈ R and hence t 7→ exp(tX) is the unique one-parameter
subgroup corresponding to X , that is d0(exp(tX)) = d0(ϕX(t)) = X .

3. exp(t1 + t2)X = exp(t1X) exp(t2X) for all t1, t2 ∈ R.
4. exp(tX)−1 = exp(−tX) for all t ∈ R.
5. exp : g → G is a smooth map, and a local diffeomorphism from a neighborhood of

0 ∈ g onto a neighborhood of e ∈ G. In fact, d0 exp = Id.

Proof 1. The vector fields 1̃ ∈ Vect(R)R and X̃ ∈ Vect(G)G are ϕX -related (Lemma 3.3), so
that ϕX is the unique integral curve of X̃ such that ϕX(0) = e. Moreover d0ϕX(t) = ϕ′

X(t).

SinceX is left invariant, Lg ◦ϕX is also an integral curve and the unique one that goes through
g at t = 0.

2. Let t, s ∈ R, X ∈ g. We claim that ϕsX(t)
(∗)
= ϕX(st). Assuming (∗) and setting t = 1, we

obtain exp(sX) = ϕsX(1) = ϕX(s). Thus s 7→ exp(sX) = ϕX(s) is the unique one-parameter
subgroup whose tangent vector at t = 0 is X .

To prove (∗), recall that ϕsX is the unique integral curve of sX such that ϕsX(0) = e.
On the other hand let η : R → G be defined by η(t) = ϕX(st) for s ∈ R fixed. Then
d0η(t) = d

dt

∣∣
t=0

ϕX(st) = sϕ′
X(0) = sX . Since η(0) = e, then η has the same properties

as ϕsX , and (∗) follows.

3. and 4. are obvious since t 7→ exp tX is a homomorphism.

5. Consider the manifold M = G× g and the horizontal vector field Ξ ∈ Vect(G× g) defined by

Ξ(g,X) = (X̃g, 0) ∈ TgG⊕ TXg .

Since X̃ is smooth, Ξ is as well and hence there exists an integral curve ϕ
(X̃g ,0)

: (−ε, ε)→ G× g
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such that Lgϕ(X̃g ,0)
(t) = (g exp tX,X) is the integral curve through (g,X) at t = 0 (which is

the translate under Lg of the integral curve through (e,X)). Since G × g is a Lie group, ϕ
(X̃g ,0)

is complete, so it is defined for all t ∈ R, and in particular for t = 1, so that

ϕ
(X̃g ,0)

(1) = (g expX,X).

By the theorem on smooth dependence of solutions of ODEs on the initial conditions, ϕ
(X̃g ,0)

is
smooth on G × g. Let now prG : G × g → G be the projection, which is a smooth map. Then
exp : g→ G can be written as

exp(X) = prG ◦ ϕ(X,0)(1).

and is hence smooth.

To check that exp is a local diffeomorphism it is enough to check that d0 exp: T0g → TeG

is invertible. We show in particular that d0 exp = Id. Let ψ : (−ε, ε) → g be the curve
ψ(t) = tX . Then ψ(0) = 0 and ψ′(0) = X . But ϕX : R → G, ϕX(t) = exp(tX) has the
property that ϕX(0) = 0 and ϕ′

X(0) = X , so that d0ϕX = ψ. Thus d0ϕX(t) = tX , so that
d0 exp(tX) = tX .

For a Lie group this amounts to saying that there is one curve that behaves well, namely it is a
homomorphism R→ G. What the exponential map does is to take a line and push it down to the
group wrapping it around and preserving the group structure.

Example 3.28

1. Let G = Rn. Then exp : Lie(Rn) ∼= Rn → Rn is the identity.
2. PICTURE Let G = S1 = {z ∈ C : |z| = 1}. Then T1S1 ∼= iR ∼= R and, chasing the

definitions, it is easy to see that exp: R→ S1 is exp(t) = eit.

We want to identify the exponential map for G = GL(n,C) and we will see that it is indeed
equal to the usual matrix exponential. We will need the following:

Lemma 3.6. Matrix exponential

♥

Let V be an n-dimensional complex vector space.
1. The map X 7→ eX :=

∞∑
j=0

Xj

j! is a well defined map from End(V ) to GL(V ).

2. det(eX) = etrX for all X ∈ End(V ).
3. If X and Y commute, then eX+Y = eXeY .

Proof 1. To see that the map is well defined we will show that the right hand side converges
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uniformly on compact sets. In fact let K ⊂ End(V ) be a compact set and let c > 0 be such that
|Xij | ≤ c ifX ∈ K. Then an induction argument shows that |(Xm)ij | ≤ (nc)m. Since

∞∑
m=0

(nc)m

m!

converges,
∞∑
m=0

(Xm)ij
m! converges uniformly on K, and hence the same is true of

∞∑
m=0

Xm

m! . (Here

we used the Weierstrass test: if (fn) is a sequence of real or complex valued functions on a set A
with the property that |fn(x)| ≤Mn for all x ∈ A and

∞∑
n=0

Mn converges, then the series
∞∑
n=0

fn(x)

converges uniformly on A.)

Hence the map is well defined and we have to see that it takes values in GL(V ), that

is, it is invertible. In fact, let Sj(X) be the j-th partial sum
j∑

m=0

Xm

m! . By continuity

of the multiplication End(V ) → End(V ), X 7→ BX for B ∈ End(V ) we have that
B lim
j→∞

Sj(X)B−1 = lim
j→∞

BSj(X)B−1, so that

BeXB−1 (∗)
= eBXB

−1
. (3.6)

Remark now that we can find B ∈ GL(V ) such that BXB−1 is upper triangular: in fact, if v1
is an eigenvector of X , we can construct inductively vj+1 as an eigenvector of prj ◦ X , where
prj : V → Wj is the projection onto Wj where V = Vj ⊕Wj and Vj = span{v1, . . . , vj}. Now
chooseB to be the matrix that has vj as column vectors, and let λj be the eigenvalue corresponding
to vj .

If BXB−1 =


λ1 ∗

. . .

0 λn

, then

eBXB
−1

=


eλ1 ∗

. . .

0 eλn

 ,

so that

det eX = detBeXB−1 (∗)
= det eBXB

−1 6= 0,

and so eX ∈ GL(V ).

2. In particular we have that if BXB−1 is upper-triangular, then

det eBXB
−1

= eλ1 · · · eλn = eλ1+···+λn = etr(BXB
−1).
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By invariance under conjugation, and using again (3.6),

det eX = detBeXB−1 = det eBXB
−1

= etrBXB
−1

= etrX .

3. We can write:

eXeY =

 ∞∑
j=0

Xj

j!

( ∞∑
ℓ=0

Y ℓ

`!

)
=

∞∑
n=0

n∑
k=0

XkY n−k

k!(n− k)!
=

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
XkY n−k =

∞∑
n=0

(X + Y )n

n!
= eX+Y .

Corollary 3.8. Exponential map of GL(V )

♥

The assignment t 7→ etX is a smooth curve inGL(V ) that takes the value I at t = 0 and such
that the tangent vector at I is X . Hence etX = exp(tX), so that exp: gl(V )→ GL(V ) is
just exp(X) = eX .

Proof From the previous lemma we deduce that t 7→ etX is a homomorphism. Since

d

dt
etX
∣∣∣∣
t=0

=
d

dt

∞∑
m=0

(tX)m

m!

∣∣∣∣∣
t=0

= X
∞∑
m=1

m

m!
(tX)m−1

∣∣∣∣∣
t=0

= X

∞∑
m=0

(tX)m

m!

∣∣∣∣∣
t=0

= XetX
∣∣
t=0

= X,

by uniqueness we have the assertion.

Proposition 3.10. Naturality of exp

♠

Let ϕ : G→ H be a Lie group homomorphism. Then the following diagram commutes:

g
deφ //

expG

��

h

expH

��
G

φ / / H ,

that is ϕ ◦ expG = expH ◦ deGϕ.

Proof LetX ∈ g. Then t 7→ expG(tX) is the unique one-parameter subgroup ofG that takes the
value eG and has tangent vectorX at t = 0. Since ϕ is a homomorphism, then t 7→ ϕ(expG(tX))

is a one-parameter subgroup of H that takes the value eH at t = 0 and whose tangent vector at



3.5 The Exponential Map – 79 –

t = 0 is
d

dt

∣∣∣∣
t=0

ϕ(expG(tX)) = deGϕ(X) .

But the only one-parameter subgroup ofH with these properties is t 7→ expH(t deGϕ(X)). Hence
for all t ∈ R we have ϕ(exp(tX)) = exp(t deGϕ(X)), so that ϕ ◦ exp = exp ◦deGϕ.

Since g is connected, then exp(g) ⊆ G0, the connected component of G, but there is not
necessarily equality. In other words, exp: g → G may not be surjective, even when G is
connected.

Example 3.29 We want to show that the exponential map is not necessarily surjective, even for
connected Lie groups. Let G = SL(2,R) and g = sl(2,R). We show that exp: sl(2,R) →
SL(2,R) is not surjective.

The argument is in two steps:

1. We first show that the image exp(sl(2,R)) consists of matrices that are squares. That is if
A ∈ exp(sl(2,R)), then A = B2 for some B ∈ exp(sl(2,R)).

2. We will show that there existsA ∈ SL(2,R) that is not a square. We will do this by showing
that ifA ∈ SL(2,R) is a square, then tr(A) ≥ −2. It follows that exp: sl(2,R)→ SL(2,R)
misses the whole open set {A ∈ SL(2,R) : tr(A) < −2}.

1.Let X ∈ sl(2,R) and let A := exp(X). Then

A = exp(X) = exp

(
X

2
+
X

2

)
= exp

(
X

2

)2

= B2,

where B = exp
(
X
2

)
. Notice that if X ∈ sl(2,R), then tr(X) = 0, so tr

(
X
2

)
= 0, which implies

that B ∈ exp(sl(2,R)) as well.

2. Any matrixB ∈ GL(2,R) is a root of its characteristic polynomial λ2− tr(B)λ+det(B), that
is

B2 − tr(B)B + det(B)I = 0.

By taking the trace of this equation, and assuming further that B ∈ SL(2,R), we obtain

tr(B2)− tr(B)2 + 2 = 0.

Letting A = B2, this implies that

tr(A) = tr(B)2 − 2 ≥ −2 .
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But {A ∈ SL(2,R) : tr(A) < −2} is not empty since for example if A =

(
−2 0

0 −1
2

)
, then

tr(A) < −2. Thus expSL(2,R) is not surjective.

In the previous example the non-compactness of SL(2,R) plays an important role, as the
following theorem shows:

Theorem 3.11. Cartan

♥The exponential map of a compact connected Lie groups is surjective.

Remark For a non-compact connected Lie group G, the next best thing to surjectivity is the
following: every g ∈ G can be written as expX1 · · · expXn for X1, . . . , Xn ∈ g (von Neumann,
1929). The proof is as in the extension of a local homomorphism (Theorem 2.1). A more recent
result shows that in fact n = 2 is sufficient.

The proof of Cartan’s Theorem is not difficult, but it relies on results either in differential
geometry or in the structure theory of Lie groups that we have not yet covered. We give here the
idea of two proofs. For a complete proof see for example [2, Chapter 16, 17].

1. Any compact connected Lie group can be given the structure of a Riemannian manifold
with a bi-invariant metric. (In fact, this is almost a characterization, in the sense that a Lie group
admits a bi-invariant metric if and only it is the product of a compact Lie group and an Abelian
Lie group.) This can be done in either one of two ways: either by averaging an arbitrary positive
definite inner product on g and then translating it to a left invariant positive definite inner product
on TgG, that is to a bi-invariant metric on G; or by embedding G into U(n) using the Peter–Weyl
Theorem, and obtaining a bi-invariant metric on G from the one on Cn×n.

In either cases, since G is compact and connected, hence complete, one can use the Hopf-
Rinow Theorem and deduce that any two points are joined by a geodesic. It follows that the
Riemannian exponential, obtained by following geodesics, is surjective. One can then prove that,
under the given settings and structure on G, the Riemannian exponential coincides with the Lie
group exponential.

2. One can easily see that the exponential map of a torus is surjective. Then one can show that
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in a compact connected Lie group, every element lies in a maximal torus, and all tori are conjugate.

Example 3.30 Let

N1 =



1 ∗

. . .

0 1

 ∈ SL(n,R)

 ,

with Lie algebra

n1 =



0 ∗

. . .

0 0

 ∈ sl(n,R)

 .

IfA ∈ n1, thenAn = 0, so exp(A) =
n−1∑
j=0

Aj

j! . Moreover, ifB ∈ N1, then we can writeB = I+B′

where (B′)n = 0. Define then log : N1 → n1, by

log(B) = log(I +B′) :=

n−1∑
j=1

(−1)j−1 (B
′)j

j
.

Finite power series manipulation shows that exp: n1 → N1 and log : N1 → n1 are inverse of each
other, and so exp is surjective.

We now see some applications of the exponential map. We saw that if X,Y ∈ GL(n,C)
commute and eX is the matrix exponential then eX+Y = eXeY .

Proposition 3.11

♠

If G is a connected Abelian group, then exp: g→ G is a group homomorphism, that is

exp(X + Y ) = exp(X) exp(Y )

for every X,Y ∈ g and G ∼= g/Γ, where Γ := ker exp is discrete.

Notice that we could recover here immediately the classification of connected Abelian Lie
groups (Corollary 3.7).

Proof Since G is Abelian, the multiplication map m : G×G→ G is a homomorphism. In fact

m(g1, h1)m(g2, h2) = g1h1g2h2 = g1g2h1g2 = m(g1g2, h1h2)

and we saw already that d(e,e)m(X,Y ) = X + Y . Using these two facts and the naturality of the
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exponential map we have that the following diagram commutes:

g× g
d(e,e)m //

expG×G

��

g

expG

��
G×G m // G

In other words
expG(X + Y ) = expG d(e,e)m(X,Y ) = m expG×G(X,Y )

= m(expG(X), expG(Y )) = expG(X) expG(Y ) ,

where we used that, if G and H are Lie groups, expG×H = expG× expH .

Since exp is a homomorphism, its image is a subgroup containing a neighborhood of the
identity. By Proposition 2.1.7., the exponential map is surjective. The fact that ker exp is discrete
follows from the fact that it is a local diffeomorphism.

We can now prove a characterization of Lie groups related to Hilbert’s fifth problem. In 1900
Hilbert formulated 23 problems, the fifth of which, reinterpreted in modern terminology, contains
the question as to whether it makes a difference to require in the definition of a Lie group that it
is a topological manifold or a smooth manifold. This was proven in the negative (as expected) at
the beginning of the 50s by Gleason [3], Montgomery–Zippin [5] and Yamabe [12]. The possible
existence of small subgroups was recognized as one of the main difficulties involved in the proof.

Definition 3.18. Small subgroup

♣

A topological groupG is said to have small subgroups if every neighborhood of the identity
contains a non-trivial subgroup.

Theorem 3.12. No small subgroups

♥

A connected locally compact topological group is a Lie group if and only if it has no small
subgroups.

We are not going to prove the “if” direction of the theorem in general. We are only going
to illustrate it with the following two results. A good reference in modern terminology is [10,
Theorem 1.1.13].
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Lemma 3.7

♥

Let L :=
∏
n≥1

Gn be an infinite product of non-trivial topological groups. Then L has small

subgroups.

Proof Let V be a neighborhood of e in L. By definition of the product topology there exists

k ≥ 1 and neighborhoods V1, . . . , Vk of e inG1, . . . , Gk such that V ⊃
k∏
i=1

Vi×
∞∏

j=k+1

Gj . Hence

V contains the group (e, . . . , e)×
∞∏

j=k+1

Gj .

For compact groups the fact that the condition of having no small subgroups is sufficient was
already proven by Von Neumann:

Theorem 3.13. (Von Neumann)

♥If a compact topological group K has no small subgroups then it is a Lie group.

Proof According to Peter–Weyl Theorem, the left regular representation of K decomposes as
a (not necessarily countable) direct sum of finite dimensional irreducible unitary representations.
Let us consider the continuous injective homomorphism

Λ: K →
∏
ρ∈K̂

U(Λρ)

x 7→ (ρ(x))ρ∈K̂ ,

where K̂ is the unitary dual of K and the U(Λρ) are compact groups. If Λ(K) has no small
subgroups, then there exists n ≥ 1 such that

Λ(K) ∩

(eρ1 , . . . , eρn)×
∏
ρ∈K̂

ρ ̸=ρ1,...,ρn

U(Λρ)

 = {e} .

But then pr: Λ(K) → U(Λρ1) × · · · × U(Λρn) is injective. Therefore K can be embedded as a
closed subgroup of a finite dimensional unitary group, hence it is a Lie group.

Proof [Proof of Theorem 3.12 (⇒)] Let 0 ∈ U0 ⊂ g and e ∈ Ve ⊂ G be open neighborhoods
such that exp: U0 → Ve is a diffeomorphism, and letWe := exp 1

2U0. We will show thatWe does
not contain non-trivial subgroups H < G.
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Suppose by contradiction that {e} 6= H is a subgroup ofG such thatH ⊂We. Let e 6= h ∈ H
andX ∈ 1

2U0 such that expX = h. We will show that there are powers of h not inH , contradicting
that H is a subgroup. In fact, let n ∈ N be such that 2nX ∈ 1

2U0 and 2n+1X /∈ 1
2U0. Notice that,

since 2nX ∈ 1
2U0, then 2n+1X ∈ U0. Then by Proposition 3.11

h2
n+1

= exp(2n+1X) ∈ exp

(
U0 r

1

2
U0

)
⊆ Ve r We .

So h2n+1
/∈ H ⊂We, which is a contradiction.

Hence, given a topological groupG, there is a criterion to determine whether or not the group
G can be made into a Lie group. A natural question is then whether a Lie group can have several
smooth structures. The answer is a corollary of the following theorem:

Theorem 3.14. Continuous implies smooth

♥Any continuous homomorphism of two Lie groups is smooth.

Corollary 3.9

♥Two real Lie groups that are isomorphic as topological groups are isomorphic as Lie groups.

Notice that the assumption the the groups are real is essential. In fact C/(Z + ıZ) and
C/(Z+ 2ıZ) are isomorphic as real Lie groups but not as complex Lie groups.

Proof [Proof of Corollary 3.9] The continuous isomorphism would be a diffeomorphism between
the two smooth structures.

We start the proof of Theorem 3.14 with the following.

Proposition 3.12. (Local coordinates)
Let G be a Lie group with Lie algebra g and let g1, . . . , gk be subspaces such that
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♠

g = g1 ⊕ · · · ⊕ gk. Then the map

φ : g1 ⊕ · · · ⊕ gk −→ G

X1 + · · ·+Xk 7→ expG(X1) · · · expG(Xk)

is a smooth map and a local diffeomorphism φ : W1 + · · ·+Wk → Ve, where 0 ∈Wi ⊂ gi

and e ∈ Ve ⊂ G are open neighborhoods. In fact d0φ = Id.

Proof We take for simplicity k = 2, we identify g1⊕g2 with g1×g2 and we set expi := expG |gi
so that d0 expi = Idgi . Then

d0φ(X1 +X2) = d(0,0)φ(X1, X2) = d0m(exp1× exp2)(X1, X2)

= d(e,e)m(d0 exp1X1, d0 exp2X2)

(∗)
= d(e,e)m(X1, X2) = X1 +X2 ,

where in (∗) we used Proposition 3.9.5.

Remark As a consequence of the proposition, if {X1, . . . , Xn} is a basis of g, and

U :=

(t1, . . . , tn) ∈ Rn :
n∑
j=1

tjXj ∈W1 + · · ·Wn

 ,

the map

Ve −→ U

φ

 n∑
j=1

tjXj

 =
n∏
j=1

exp(tjXj) 7→ (t1, . . . , tn)

gives a chart at the identity in G. Using this coordinate chart and left translation, we can construct
an atlas for G.

Proof [Proof of Theorem 3.14] Let h : G → H be a continuous homomorphism of Lie groups,
{X1, . . . , Xn} is a basis of g and g = g1 ⊕ · · · ⊕ gn, where gi = RXi. Let expi := expG |gi and

φ : g −→ G

X1 + · · ·+Xn 7→ (exp1X1) · · · (expnXn) .

or
φ ◦ ψ : U −→ G

(t1, . . . , tn) 7→ exp1(t1X1) · · · expn(tnXn)
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where
ψ : U −→W1 + · · ·+Wn ⊂ g

(t1, . . . , tn) 7→ t1X1 + · · · tnXn .

We assume now the following:

Proposition 3.13

♠Any continuous homomorphism R→ G is smooth.

Collecting the above maps, we have that

U
ψ−→ W1 + · · ·+Wn

ϕ−→ Ve
h−→ H

(t1, . . . , tn) 7→ t1X1 + · · ·+ tnXn 7→
n∏
i=1

exp(tiXi) 7→ h

(
n∏
i=1

exp(tiXi)

)
.

Since h is a homomorphism

h

(
n∏
i=1

(exp(tiXi)

)
=

n∏
i=1

h(exp(tiXi)) .

Let now hi : R→ G be defined as hi(t) := h(exp(tXi)). Then hi is a continuous homomorphism,
hence smooth by Proposition 3.13. Thus

∏n
i=1 h(exp(tiXi)) =

∏n
i=1 hi(ti) and since φ ◦ ψ is a

diffeomorphism, h is smooth at the origin and hence smooth everywhere.

Hence we are left to prove the proposition, which is where the heart of the issue lies.

Proof [Proof of Proposition 3.13] Let 0 ∈ W0 ⊂ g and e ∈ Ue ⊂ G be neighborhoods such that
expG : W0 → Ue is a diffeomorphism, and let e ∈ Ve ⊂ G be such that V 2

e ⊂ Ue. Note that
Ve ⊂ V 2

e .

Claim 3.5.1. Every element g ∈ Ve has a unique square root
√
g = exp

(
1

2
exp−1(g)

)
.

In other words, the map Ve → Ue defined by g 7→ g2 is injective and the image contains Ve.

In fact, if g ∈ Ve ⊂ Ue, let X ∈ W0 be such that exp(X) = g, and let us consider the
one-parameter subgroup of G defined by ϕX(t) = exp(tX). Then ϕX(1) = exp(X) = g and

g2 = ϕX(1)
2 = ϕX(2) = exp(2X) = exp(2 exp−1(g)) .
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But also g2 ∈ Ue, where exp−1 is a diffeomorphism, so

exp−1(g2) = 2 exp−1(g)⇒ 1

2
exp−1(g2) = exp−1(g)⇒ exp

(
1

2
exp−1(g2)

)
= g

which proves the claim.

To conclude the proof it will be enough to prove the following:

Claim 3.5.2. Let h : R → G be a continuous homomorphism and let X ∈ g be such that
exp(X) = h(1), then h

(
1
2n

)
= exp

(
1
2nX

)
.

In fact, assuming the claim, if p ∈ Z then

h
( p
2n

)
= h

(
1

2n

)p
= exp

(
1

2n
X

)p
= exp

( p
2n
X
)
.

So the assertion holds for all dyadic numbers. Since these are dense in R, the conclusion of
Proposition 3.13 follows from the continuity of h.

We show the assertion in Claim 3.5.2 by induction. We start by justifying why the hypothesis
holds. In fact, since h is continuous and Ve is open, there exists ε > 0 such that if |t| ≤ ε, then
h(t) ∈ Ve. By rescaling h (that is considering hϵ(t) := h(t/ε)), we may assume that ε = 1, so
that h(1) ∈ Ve.

For the base case n = 1, set g0 := h(1) ∈ Ve and X := exp−1(g0). Then by Claim 3.5.1:
√
g0 = exp

(
1

2
exp−1(g0)

)
= exp

(
1

2
X

)
is the unique square root of g0 ∈ Ve. But also g0 = h(1) = h

(
1
2

)2, so by uniqueness of the square
root in Claim 3.5.1, h

(
1
2

)
=
√
g0 = exp

(
1
2X
)
.

Now assume that for all k < n we have h
(

1
2k

)
= exp

(
1
2k
X
)
. Set gn := h

(
1
2n

)
∈ V . By

Claim 3.5.1 again:

h

(
1

2n

)
= gn = exp

(
1

2
exp−1(g2n)

)
= exp

(
1

2
exp−1

(
h

(
1

2n

)2
))

= exp

(
1

2
exp−1

(
h

(
1

2n−1

)))
= exp

(
1

2
exp−1 exp

(
1

2n−1
X

))
= exp

(
1

2n
X

)
.

This concludes the proof.

The following theorem was already mentioned but we can finally prove it. It was first shown
by Von Neumann for G = GL(n,R), then extended to all Lie groups by Cartan.
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Theorem 3.15. Closed Subgroup Theorem

♥Let G be a real Lie group and H a closed subgroup. Then H is a real Lie group.

Remark The result does not hold ifG is a complex Lie group, that is, if it is locally diffeomorphic
to Cn for some n. The point is that being a submanifold does not force a complex structure on the
group.

Example 3.31 GL(1,C) ∼= C× is a complex Lie group, but S1 is a closed subgroup that is not a
complex Lie group, for instance because it is odd-dimensional. It is however a real Lie group.

The proof will rely upon the following two lemmas that are left as an exercise.

Lemma 3.8

♥

Let H be an abstract subgroup of the Lie group G and let h be a subspace of g = Lie(G).
Let 0 ∈ U0 ⊂ g and e ∈ Ve ⊂ G be open neighborhoods such that exp : U0 → Ve is a
diffeomorphism. Suppose that

exp(U0 ∩ h) = Ve ∩H . (3.7)

Then:
1. H is a Lie subgroup of G with the induced topology;
2. h is a Lie subalgebra of g;
3. h = Lie(H).

Idea of the proof: Use (3.7) to define charts on H and use that if X ∈ g, then X ∈ h if and
only if exp tX ∈ H for all t ∈ R (see Warner, p.104).

We saw that given a Lie group G, the pair (H,ϕ) is a Lie subgroup if

1. H is a group;
2. H is a manifold, and the the smooth structure is compatible with the group structure;
3. ϕ(H) is a submanifold of G.

In fact, the requirement of the compatibility of the group structure and the manifold structure ofH
is not necessary, as one can prove the following:

Fact: If H is a subgroup of a Lie group G admitting a manifold structure that makes it into a
submanifold of G, then the manifold and the group structure are compatible. Hence H (or ϕ(H))
is a Lie subgroup of G.

Sketch of proof. Take TeH and consider the distribution D obtained by left translation via
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elements ofG. Then one can show thatH is an integral manifold ofD and henceD is an involutive
distribution. One can then show that the group operations are smooth (Warner, p. 195).

In fact, (3.8) is exactly what is needed to give H a manifold structure. The fact that the
topology of H coincides with the topology induced by G follows from the fact that H is closed in
G.

Lemma 3.9

♥

Let G be a Lie group with Lie algebra g. If X,Y ∈ g, then for t small enough

exp(tX) exp(tY ) = exp
(
t(X + Y ) +O(t2)

)
, (3.8)

where 1
t2
O(t2) is bounded at t = 0.

Proof [Proof of Theorem 3.15] We want to identify a subspace h of g that will satisfy (3.7). To
this purpose, let

h := {X ∈ g : exp(tX) ∈ H for all t ∈ R} .

Then

1. we first show that (3.8) implies that h is a subspace,
2. then that h and H satisfy (3.7) for appropriate U0 and Ve.

To see that h is a subspace, observe that it is closed under multiplications by scalars. To see
that h is closed under addition, observe that it follows from (3.8) it follows

(exp(tX) exp(tY ))n =
(
exp

(
t(X + Y ) +O(t2)

))n
= exp

(
nt(X + Y ) +O(nt2)

)
.

Replacing t by t
n , one obtains(
exp

(
t

n
X

)
exp

(
t

n
Y

))n
= exp

(
t(X + Y ) +

1

n
O(t2)

)
,

which shows that

lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n
= exp(t(X + Y )).

Thus, since H is a closed subgroup, if X,Y ∈ h then also X + Y ∈ h. Hence h is a subspace.

To show thatH and h satisfy (3.7) we proceed by contradiction. Since exp(U0∩h) ⊆ Ve∩H ,
if (3.7) did not hold, for every U0 ⊂ g and Ve ⊂ G such that exp: U0 → Ve is a diffeomorphism,
we could find h ∈ Ve ∩H but h /∈ exp(U0 ∩ h). Thus let 0 ∈ W0 ⊂ h be an open neighborhood
and (hk)k≥1 ⊂ H a sequence such that hk → e and hk /∈ exp(W0).

Let now h′ be a complementary subspace of h in g, g = h ⊕ h′ and, using Proposition 3.12,
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choose 0 ∈ N0 ⊂W0 ⊂ h and 0 ∈ N ′
0 ⊂ h′ such that the map

N0 ×N ′
0 −→ G

(X,X ′) 7→ expX expX ′

is a diffeomorphism onto its image Ae 3 e.

By assumption hk → e and so hk ∈ Ae for all large k, so that hk = exp(Xk) exp(X
′
k)

for Xk ∈ N0 and X ′
k ∈ N ′

0. We need to investigate further the properties of Xk and
X ′
k. Firstly, we know that hk /∈ exp(W0), so since Xk ∈ N0 ⊂ W0, we deduce that

X ′
k 6= 0 for all k. Secondly, since Xk ∈ N0 ⊂ W0 ⊂ h, we know that exp(Xk) ∈ H .

Thus it follows from exp(Xk) exp(X
′
k) = hk that exp(X ′

k) = exp(−Xk)hk ∈ H , that is
e 6= exp(X ′

k) ∈ H ∩ exp(N ′
0 r {0}). We will show that this is impossible. In fact, let us

consider the sequence (X ′
k)k≥1 constructed above and let Lk := RX ′

k, which is an element of the
projective space P(h′). Since P(h′) is compact, up to passing to a subsequence, the sequence Lk
converges, say to L ∈ P(h′).

This means that if we take X ′ ∈ L and ε > 0, then for any k ≥ k(ε) large enough we have:

Lk ∩B(X ′, ε) 6= ∅;
‖X ′

k‖ < ε;
There exists nk ∈ Z such that ‖X ′ − nkX ′

k‖ < ε, that is nkX ′
k → X ′. This last property

follows from the Archimedean property of real numbers.

But then

expX ′ = lim
k→∞

exp(nkX
′
k) = lim

k→∞
exp(X ′

k)
nk ∈ H.

This is a contradiction, since X ′ ∈ L ⊂ P(h′), and so expX ′ /∈ H .
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3.6 The Adjoint Representation

Let G be a Lie group. A representation of G over k (where k = R or C) is a continuous
(hence smooth by Theorem 3.14) homomorphism π : G 7→ GL(n, k). A representation of a Lie
algebra g over k is a homomorphism g → gl(n, k). Any Lie group representation π gives in turn
by differentiation a Lie algebra representation deπ : g 7→ gl(n, k). Both G and g act on kn (via
π and deπ respectively) and it is easy to see that if V ⊂ kn and G is connected, then V is π(G)-
invariant if and only if it is deπ(g)-invariant. In fact, in the appropriate coordinates, the stabilizer

HV ≤ GL(n, k) of V takes the formHV =

(
∗ ∗
0 ∗

)
and likewise for Lie(HV ) ⊂ gl(n,R) . Thus

π(G) ⊂ HV if and only if deπ(g) ⊂ Lie(HV ).

For each g ∈ G we consider the inner automorphism of G defined in (2.6), cg(h) := ghg−1.
Since cg(e) = e for all g ∈ G, decg : g→ g is a Lie algebra automorphism, and since cg ◦ch = cgh,
it defines a representation of G into GL(g).

Definition 3.19. Adjoint representation

♣

Let G be a Lie group.
1. The adjoint representation of G is

Ad: G→ GL(g)

g 7→ decg .

2. The adjoint representation of the Lie algebra g

ad: g→ gl(g)

is defined by

ad = deAd .

Remark By the naturality of the exponential map, we have the commutativity of the following
diagram

g
Ad(g) //

expG

��

g

expG

��
G

cg // G
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that is

expG ◦Ad(g) = cg ◦ expG , (3.9)

as well as of the diagram

g
ad //

expG

��

gl(g)

expGL(g)

��
G

Ad // GL(g)

that is

expGL(g) ◦ad(X) = Ad ◦ expG(X) (3.10)

for all X ∈ g.

Proposition 3.14

♠

If G is a closed subgroup of GL(n,R), then

Ad(g)(X) = gXg−1

for all g ∈ G and all X ∈ g.

Proof SinceG ≤ GL(n,R), the assertion follows from the fact that cg is linear, and so decg = cg

and from (3.9).

One can also give an explicit characterization of ad, which holds however for all Lie groups
and not necessarily only for the linear ones.

Proposition 3.15

♠

If G is a Lie group with Lie algebra g, then for all X,Y ∈ g

ad(X)(Y ) = [X,Y ] .

Proof We start by illustrating a proof that is just very sloppy but gives the idea of what one is
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looking for. By definition of Ad and ad, if X,Y ∈ g we can write

ad(X)(Y ) = (deAd)(X)(Y )

=
d

dt

∣∣∣∣
t=0

Ad(exp(tX))(Y )

=
d

dt

∣∣∣∣
t=0

(decexp(tX))(Y )

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

cexp(tX)(exp(sY ))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

exp(tX) exp(sY ) exp(−tX)

If G is a linear group, decg = cg, so that Ad(g) = cg (Proposition 3.14) and

ad(X)(Y ) =
d

dt

∣∣∣∣
t=0

exp(tX)Y exp(−tX) = XY − Y X .

If G is not linear one would need to compute also the derivative with respect to s.

The problem (in fact, one of the problems) with the above “proof” is that we considered only
vector fields at the identity, while instead if we want to take derivatives we need to consider the
vector fields defined in a neighborhood of e. In other words, ifZ ∈ g, we denote by Z̃ ∈ Vect(G)G

the left invariant vector field whose value at e ∈ G is Z.

The naturality of the exponential map (3.10), gives for all tX ∈ g

Ad(expG(tX)) = expGL(g)(ad(tX)) .

But we saw in Corollary 3.8 that expGL(g) is just the matrix exponential, so that

Ad(exp(tX))(Y ) = expGL(g)(ad(tX))(Y ) = ead(tX)Y =

= Y + t ad(X)Y +
t2

2
R(t,X)Y .

(3.11)

where R(t,X) is the smooth remainder. By considering the invariant vector fields associated to
the ones in (3.11) and differentiating one obtains for f ∈ C∞(G)

(ad(X)Y )̃g(f) =
d

dt

∣∣∣∣
t=0

(Ad(exp(tX)(Y ))̃g(f) (3.12)

and the rest of the proof will be the technical calculation of the derivative on the right hand side.

Recall that Z̃g(f) is the directional derivative of f at g in the direction of Z̃g, that is

Z̃g(f) = (dgf)(Z̃g) = (dgf)(deLg)(Z) = de(f ◦ Lg)(Z).

1. Since Z is the tangent vector at s = 0 to the curve s 7→ exp(sZ), we have at the point
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g exp(tX),

Z̃g exp(tX)(f) = de(f ◦ Lg exp(tX))(Z) =
d

ds

∣∣∣∣
s=0

(f ◦ Lg exp(tX))(exp(sZ))

=
d

ds

∣∣∣∣
s=0

f(g exp(tX) exp(sZ)) .

2. If instead Z = Ad(h)(Y ) = dech(Y ) is the tangent vector to the curve s 7→ h exp(sY )h−1,
then

(Ad(h)(Y ))̃g(f) = de(f ◦ Lg)(Ad(h)(Y )) =
d

ds

∣∣∣∣
s=0

(f ◦ Lg)(h exp(sY )h−1) =

=
d

ds

∣∣∣∣
s=0

f(gh exp(sY )h−1).

3. Finally, we use that if F (u, v) is a differentiable function, then
d

dt

∣∣∣∣
t=0

F (t, t) =
d

dt

∣∣∣∣
t=0

F (t, 0) +
d

dt

∣∣∣∣
t=0

F (0, t).

Indeed, let ∆: R → R2 be the diagonal embedding t 7→ (t, t), so that F (t, t) = F ◦∆(t).
Then

d

dt

∣∣∣∣
t=0

F ◦∆(t) = d0(F ◦∆)(1) = d(0,0)F ◦ d0∆(1) = d(0,0)F (1, 1)

=
∂F

∂u
(0, 0) +

∂F

∂v
(0, 0) =

d

dt

∣∣∣∣
t=0

F (t, 0) +
d

dt

∣∣∣∣
t=0

F (0, t).

We can now finally complete the proof.
We need to
define very-
widetilde
command

From (3.12) and 2. with h = exp(tX) one has

(ad(X)(Y ))̃g(f) =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(g exp(tX) exp(sY ) exp(−tX))

3.
=

(
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(g exp(tX) exp(sY ))

)
+

(
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(g exp(sY ) exp(−tX))

)
1.
=

d

dt

∣∣∣∣
t=0

Ỹg exp(tX)(f)−
d

ds

∣∣∣∣
s=0

X̃g exp(sY )(f)

1.
= (X̃ ◦ Ỹ )g(f)− (Ỹ ◦ X̃)g(f) = [X̃, Ỹ ]g(f);

where in the next to the last equality 1. was applied to Z̃g = Ỹg exp(tX) and Z̃g = X̃g exp(sY ).

Evaluating at g = e, we conclude that ad(X)(Y ) = [X,Y ].

Example 3.32 Example of Ad(a) and ad(a) for a = diag(λ1, . . . , λn) ∈ GL(n,R) and of
Ad(SL(2,R)) and ad(sl(2,R)).
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Remark A priori we only have that ad(g) ⊂ gl(g), but in fact one can easily check using the Jacobi
identity that

ad(g) ⊂ Der(g) ⊂ gl(g) .

In fact, recall that if g is a Lie algebra, a derivation δ ∈ Der(g) is an endomorphism δ : g→ g such
that δ[X,Y ] = [δ(X), Y ] + [X, δ(Y )]. Then using the Jacobi identity,

ad(X)[Y, Z] = [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] = [ad(X)Y, Z] + [Y, ad(X)Z] .

For further structural properties of the group of automorphisms, see [8, P. 159].

Definition 3.20. Ideal in a Lie algebra

♣A subspace h of a Lie algebra g is an ideal if for all X ∈ h and all Y ∈ g, [X,Y ] ∈ h.

Proposition 3.16

♠

Let G be a connected Lie group with Lie algebra g, H a closed connected subgroup with
Lie algebra h. Then H is normal in G if and only if h is an ideal in g.

Proof
H is normal ⇔ cg(H) = H for all g ∈ G⇔ Ad(g)(h) = h for all g ∈ G⇔

⇔ ad(X)(h) ⊂ h for all X ∈ g⇔ h is an ideal.

Proposition 3.17. L

♠

t G be a connected Lie group with Lie algebra g, H a closed connected normal subgroup
with Lie algebra h. Then g/h is the Lie algebra of G/H .

Proof See [11]. write proof

Proposition 3.18

♠Let G be a connected Lie group. Then Z(G) = kerAd and Z(g) = ker ad.

Proof We will show the statement for Lie groups, and the one for Lie algebras will follow readily.

If g ∈ Z(G), then cg = Id, so that Ad(g) = Id, which means that g ∈ kerAd.

Conversely, let us suppose that g ∈ kerAd. Then decg(X) = Ad(g)(X) = X for all
X ∈ g. Applying exp on the last two terms of the above equality and using (3.9), one obtains that
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cg expX = expX . Thus cg commutes with all elements that are in the image of the exponential
map. However the same proof still works for all elements in G, since G can be generated by
elements contained in a neighbourhood where exp is a diffeomorphism (see the remark after
Cartan’s Theorem 3.11).

K Chapter 3 Exercise k

1. LetG be a Lie group andH ⊴ G a closed normal subgroup. Show thatG/H is a Lie group
and that Lie(G/H) = Lie(G)/Lie(H).

2. Show that dI det = tr, the usual trace map Rn×n → R. Deduce that SL(n,R) is a Lie
group of dimension (n2 − 1).

3. Show that O(p, q) and U(p, q) are Lie groups.
4. If Xi ∈ Vect(M) is ϕ-related to X ′

i ∈ Vect(M ′), for i = 1, 2, then [X1, X2] is ϕ-related to
[X ′

1, X
′
2].

5. Let M,M be smooth manifolds, let i : N → M be an immersed submanifold and let
f : : M → M be a smooth map such that f(M) ⊆ N . Show that i−1 ◦ f : M → N is
smooth.

6. Let G be a connected Lie group, H a topological group and p : H → G a covering map.
Then there exists a unique Lie group structure onH such that p is a Lie group homomorphism
and the kernel of p is a discrete subgroup of H .

7. Let G be a connected Lie group and (H, p) a covering with the Lie group structure given by
the previous point. Then p is a local isomorphism of Lie groups, and dep is an isomorphism
of Lie algebras.

8. Let p : H → G be a connected Lie group homomorphism. Then p is a covering map if and
only if dep is an isomorphism.

9. Let D ≤ Rn be a discrete subgroup. Then there exist x1, . . . , xk ∈ D such that:
(a). x1, . . . , xk are linearly independent over R;
(b). D is the Z-span of x1, . . . , xk, that is D = Zx1 + · · ·Zxk (in other words, x1, . . . , xk

generate D as a Z-submodule).
Thus a discrete subgroup of Rn is isomorphic to Zk for some 0 ≤ k ≤ n.

10. Let H be an abstract subgroup of the Lie group G and let h be a subspace of g = Lie(G).
Let 0 ∈ U0 ⊂ g and e ∈ Ve ⊂ G be open neighborhoods such that exp : U0 → Ve is a
diffeomorphism. Suppose that exp(U0 ∩ h) = Ve ∩H . Then:
(a). H is a Lie subgroup of G with the induced topology;
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(b). h is a Lie subalgebra of g;
(c). h = Lie(H).

11. Let G be a Lie group with Lie algebra g. If X,Y ∈ g, then for t small enough

exp(tX) exp(tY ) = exp
[
t(X + Y ) +O(t2)

]
,

where 1
t2
O(t2) is bounded at t = 0.



Chapter 4 Structure Theory

4.1 Solvability

We defined in the previous section the adjoint representation of the Lie algebra of a Lie group.
One can also define the adjoint representation of an abstract Lie algebra g.

Definition 4.1. Adjoint representation, II

♣

Let g be a Lie algebra. The adjoint representation is defined as

ad: g→ gl(g)

X 7→ ad(X) ,

where ad(X)(Y ) := [X,Y ] for all Y ∈ g.

That this definition coincides with the one for the Lie algebra of a Lie group is the content of
Proposition 3.15.

Definition 4.2. Characteristic ideal

♣

Let g be a Lie algebra. An ideal h is characteristic if δ(h) ⊂ h for every derivation
δ ∈ Der(g).

The importance of characteristic ideals lies in the following result:

Lemma 4.1

♥If k ⊂ g is an ideal and h ⊂ k is a characteristic ideal in k, then h is an ideal in g.

Proof We saw that because of the Jacobi identity, if X ∈ g the endomorphism δX : g → g

defined by δX(Y ) := [X,Y ] is a derivation of g. Since k ⊂ g is an ideal, δX(k) ⊂ k and hence
δX ∈ Der(k). Since h ⊂ k is characteristic, δX(Y ) = [X,Y ] ∈ h for all Y ∈ h. Thus h is an ideal
in g.

Example 4.1 If δ ∈ Der(g), then δ[X,Y ] = [δX, Y ] + [X, δY ]. So [g, g] is a characteristic ideal,
where [g, g] is defined as the span of elements of the form [X,Y ], for X,Y ∈ g.
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We set inductively

g(1) :=[g, g]

g(i+1) :=[g(i), g(i)] .

Then g(i+1) is a characteristic ideal of g(i), hence an ideal of g, by Lemma 4.1.

Definition 4.3. Solvable Lie algebra

♣

Let g be a Lie algebra. We call

g ⊃ g(1) ⊃ g(2) ⊃ · · ·

the derived series of g. We say that g is solvable if g(k) = {0} for some k. The smallest k
for which g(k) = 0 is the length of g.

The simplest example of a solvable Lie algebra is an Abelian one.

Proposition 4.1

♠

Let g be a Lie algebra. The following are equivalent:
1. g is solvable.
2. There exists a chain of subalgebras g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gn = {0} such that

(a). gi+1 is an ideal in gi;
(b). gi/gi+1 is Abelian.

Proof (1. ⇒ 2.) Set gi := g(i). Then the gi are ideals in g and gi/gi+1 = g(i)/[g(i), g(i)] is
Abelian.

(2.⇒ 1.) We will argue by induction on the length n of the series to show that g(k) ⊂ gk, so that
if gk = {0} for some k then also g(k) = {0}.

If n = 1 then g ⊃ g1 = {0}, so that g is Abelian and hence solvable.

Now let n > 1 and let us suppose that g(n−1) ⊂ gn−1. Then

g(n) = [g(n−1), g(n−1)] ⊂ [gn−1, gn−1] ⊂ gn ,

where the last inclusion follows from the fact that gn−1/gn is Abelian.

Corollary 4.1
Let g be a Lie algebra and let h ⊂ g be an ideal. Then g is solvable if and only if h and g/h

are solvable. If h and g/h are solvable of length respectively n and k, then g is of length
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♥≤ n+ k.

Remark It follows that the class of solvable Lie algebras is the smallest class C such that

1. Abelian Lie algebras are in C;
2. If {0} → h→ g→ g/h is a short exact sequence and h, g/h ∈ C, then g ∈ C.

Proof [Proof of Corollary 4.1] (⇒) Obvious.

(⇐) Let g/h ⊃ l1 ⊃ l2 ⊃ · · · ⊃ lk = {0} be a chain of ideals such that li/li+1 is Abelian and
similarly h ⊃ h1 ⊃ · · · ⊃ hn = {0}. Let p : g → g/h be the quotient map. Then defining
gi := p−1(li) for 1 ≤ i ≤ k and gi := hi−k for k < i ≤ k + n we obtain a chain of ideals

g ⊃ p−1(l1) ⊃ · · · ⊃ p−1(lk) = h ⊃ h1 ⊃ · · · ⊃ hn = {0}

such that gi/gi+1 is Abelian.

Example 4.2

n =



∗ ∗

. . .

0 ∗

 ∈ gl(n,R)

 ; n(1) =




0 ∗ ∗

. . .
. . .

. . . ∗
0 0




; n(2) =





0 0 ∗ ∗
. . .

. . .
. . .

. . .
. . . ∗
. . . 0

0 0




;

and so on. So n is a solvable Lie algebra.

Definition 4.4. Solvable Lie group

♣Let G be a connected Lie group. Then G is solvable if Lie(G) is solvable.

Example 4.3 The group

N :=



∗ ∗

. . .

0 ∗

 ∈ GL(n,R)


is solvable.

Proposition 4.2
Let G be a connected Lie group G. The following are equivalent:

1. G is solvable.
2. There exists a sequence of closed and connected subgroups {Gi} such that:
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♠

(a). G ≥ G1 ≥ · · · ≥ Gk = {e};
(b). Gi+1 �Gi;
(c). Gi/Gi+1 is Abelian.

Proof (2.⇒ 1.)Obvious, by taking the Lie algebras of these closed Lie subgroups (see Exercise 1.)
and using Proposition 4.1.

(1.⇒ 2.) If G is solvable, then g is solvable, so that the derived series

g ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(k) = {0} (4.1)

terminates. The sequence

G ≥ G1 ≥ G2 ≥ · · · ≥ Gk = {e} (4.2)

of Lie groupsGj such that Lie(Gj) = g(j) satisfies the required properties, with the only exception
that the Gj are not necessarily closed. We will argue by induction on the length of the series.

If k = 1, there is nothing to show. Let us assume now the assertion for all r ≤ k− 1. The Lie
algebra g(k−1) in (4.1) is Abelian and so is the group Gk−1 �G in (4.2). Its closure Gk−1 is also
an Abelian normal subgroup in G with Lie algebra gk−1 := Lie(Gk−1) which is an Abelian ideal
in g. Moreover g/gk−1 = Lie(G/Gk−1) is solvable of length ≤ k − 1. By inductive hypothesis
there exist closed connected subgroups

H := G/Gk−1 �H1 � · · ·�Hk−1 = {e}

such that Hj/Hj+1 is Abelian for all 0 ≤ j ≤ k − 2. If π : G→ G/Gk−1, let

G̃j :=π
−1(Hj), for 0 ≤ j ≤ k − 2

G̃k−1 :=Gk−1 .

Then G̃j are all closed connected normal subgroups in G. Since [Hj ,Hj ] < Hj+1, then argument!
[G̃j , G̃j ] < G̃j+1 and

G ≥ G̃1 ≥ G̃2 ≥ · · · ≥ G̃k−1 ≥ G̃k = {e}

is the required series.

Theorem 4.1. Lie’s Theorem
1. Let G be a connected solvable Lie group and let π : G → GL(n,C) be a complex

representation. Then there is a basis of Cn with respect to which π(G) consists of
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♥

upper triangular matrices, that is π(G) ≤



∗ ∗

0
. . .

0 ∗

 ∈ GL(n,C)

.

2. Let g be a solvable Lie algebra and ρ : g→ gl(n,C) a complex representation. Then
there is a basis of Cn with respect to which ρ(g) consists of upper triangular matrices.

Corollary 4.2. Solvable matrix groups

♥

Let V be an n-dimensionalC-vector space and letG < GL(V ) a Lie group with Lie algebra
g ⊂ gl(V ). Then the following are equivalent:

1. The Lie group G (or the Lie algebra g) is solvable;
2. There exists a G-invariant (or g-invariant) sequence of C-subspaces

V ⊃ Vn−1 ⊃ Vn−2 ⊃ · · · ⊃ V1 ⊃ {0}

such that dimVj = j, where n = dimV ;
3. There exists a basis of V such that G (or g) consists of upper-triangular matrices.

We now move to the proof of the Lie Theorem, for which we will need some preliminaries.

Definition 4.5

♣

1. LetG be a connected Lie group and π : G→ GL(n,C) a representations. We say that
v is a common eigenvector of {π(g) : g ∈ G} if π(g)v = χ(g)v, where χ : G→ C∗

is a smooth homomorphism.
2. Let ρ : g → gl(n,C) be a Lie algebra representation. We say that v is a common

eigenvector of {ρ(X) : X ∈ g} if ρ(X)v = λ(X)v, where λ ∈ g∗ is a linear map.

Lemma 4.2

♥

Let G be a connected Lie group, V a complex vector space and π : G → GL(V ) be a Lie
group representation. A vector v ∈ V is a common eigenvector of {π(g) : g ∈ G} if and
only if it is a common eigenvector of {deπ(X) : X ∈ g}. Moreover

χ(exp(X)) = eλ(X)

for all X ∈ g.

Proof By differentiating, it is obvious that if v is a common eigenvector for π(G) it is also a
common eigenvector for deπ(g).

To see the converse, let v be a common eigenvector of deπ(g) and let Gv := {g ∈ G :
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π(g)Cv = Cv} be the stabilizer of the line Cv. We want to show that Gv = G. By definition Gv
is a closed subgroup of G and hence a Lie group whose Lie algebra is

Lie(Gv) = {X ∈ g : expG(tX) ∈ Gv for all t ∈ R}

= {X ∈ g : π(expG(tX))Cv = Cv for all t ∈ R}

= {X ∈ g : expGL(V )(t deπ(X))Cv = Cv for all t ∈ R} .
Now observe that if A ∈ End(V ), then

expGL(V )(tA)Cv = Cv ⇔ A(Cv) ⊂ Cv .

In fact (⇐) is immediate by the exponential series and (⇒) follows from the fact that A =

limt→0
expGL(V )(tA)−Id

t .

Thus

Lie(Gv) = {X ∈ g : deπ(X)(Cv) ⊂ Cv} = g

by hypothesis. Since G s connected, this implies that Gv = G. Thus for all g ∈ G there is a well
defined χ(g) ∈ C∗ with π(g)v = χ(g)v and since g 7→ π(g)v is smooth, so is χ. Finally,

χ(expG(X))v = π(expG(X))v = expGL(V )(deπ(X))v = eλ(X)v .

Remark Suppose that H ⊴ G is a connected normal subgroup. ThenG acts on H by conjugation
G×H → H , (g, h) 7→ cg(h) = ghg−1, hence it acts on Hom(H,C∗) via (g, χ) 7→ g · χ, where
g · χ(h) := χ(c−1

g (h)) = χ(g−1hg). Observe that Hom(H,C∗) can be given a topology (e.g.
the topology of uniform convergence on compact sets, or the topology of pointwise convergence)
such that the G-action is continuous. Then if χ ∈ Hom(H,C∗) is such that the G-orbit of χ is
finite, it follows that χ is a fixed point. In fact, if χ were not a fixed point, then the G-orbit would
be discrete and not reduced to a single point, which is not possible since G is connected and the
G-action is continuous.

In a solvable group, connected normal subgroups always exist, as the following lemma shows.

Lemma 4.3

♥

IfG is solvable and dimG ≥ 1, there exists a closed connected non-trivial normal subgroup
H ⊴ G of codimension 1.

Proof Since G is solvable, there exists a closed connected normal subgroup G1 ⊴ G such that
G/G1 is Abelian, so that G/G1

∼= Rn × Tk. Let us choose a closed codimension 1 subgroup
H1 < G/G1: if this were not possible it would mean that G/G1 has dimension 1, hence G1 is a
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codimension 1 normal subgroup of G and we would be done. Then H := p−1(H1) < G, where
p : G → G/G1 is the projection, is a closed connected subgroup that is normal, since G/G1 is
Abelian, and has codimension 1. In fact, H1 �G/G1 ⇒ p−1(H1)�G and a dimension count on
the tangent spaces of the underlying manifolds gives the desired assertion.

Corollary 4.3

♥If g is a solvable Lie algebra there exists an ideal h ⊂ g of codimension 1.

We can now prove Lie’s Theorem 4.1 for Lie groups. The statement for Lie algebras is very
similar and is left as an exercise (Exercise ??).

Proof We will prove that there exists a common eigenvector v ∈ Cn. Then we can iterate the
proof, by considering a representation on Cn/Cv.

The proof will be by induction on dimG. If dimG = 1, then this is just the fact that every
complex matrix has an eigenvalue, together with Lemma 4.2.

Now suppose that dimG > 1. By Lemma 4.3 there exists a closed connected non-trivial
normal subgroup H ⊴ G of codimension 1. For each χ ∈ Hom(H,C∗) we set

Vχ := {v ∈ Cn : π(h)v = χ(h)v for all h ∈ H} .

By inductive hypothesis H has a common eigenvector, that is there exists χ ∈ Hom(H,C∗)

such that Vχ 6= 0. We now claim that if χ1, . . . , χℓ are distinct characters of H such that
Vχ1 6= {0}, . . . , Vχℓ

6= {0}, then the sum Vχ1 + · · · + Vχℓ
is direct. By contradiction take `

minimal for which this fails, so that ` ≥ 2. Let vi ∈ Vχi , vi 6= 0, 1 ≤ i ≤ ` such that
ℓ∑
i=1

vi = 0 , (4.3)

and, χℓ−1 6= χℓ, let h with χℓ−1(h) 6= χℓ(h). Applying h to (4.3), dividing by χℓ(h) and
subtracting from (4.3), we get

ℓ−1∑
i=1

[
1− χi(h)

χℓ(h)

]
vi = 0 ,

which, in view of the fact that 1− χℓ−1(h)
χℓ(h)

6= 0, gives a non-trivial linear relation contradicting the
minimality of `. Since Cn is finite dimensional, this implies that there is only a finite number of
χ ∈ Hom(H,C×) such that Vχ 6= {0}. Moreover, for all g ∈ G we have π(g)Vχ = Vg·χ. Indeed,
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let v ∈ Vχ and g ∈ G. Then for all h ∈ H:

π(h)π(g)v = π(g)π(g−1hg)v = π(g)π(c−1
g (h))v = π(g)χ(c−1

g (h))v = (g · χ)(h)π(g)v,

and so π(g)v ∈ Vg·χ.

Since there is a finite number of χ such that Vχ 6= 0, arguing as in the remark above we infer
that Vχ is G-invariant, hence g-invariant. Now let X ∈ g so that g = RX ⊕ h, where h = Lie(H)

and consider the representation deπ : g → gl(Vχ). Then X acting on Vχ has an eigenvalue, and
since each vector of Vχ is an eigenvector of deπ(Y ) for all Y ∈ h, the eigenvector of X on Vχ will
be a common eigenvector of deπ(g) and hence of π(G).

As a corollary of the proof of Lie’s Theorem we have the following:

Corollary 4.4

♥

1. Every finite dimensional irreducible complex representation of a connected solvable
Lie group (or Lie algebra) is one dimensional.

2. Every finite dimensional irreducible real representation of a connected solvable Lie
group (or Lie algebra) is at most 2-dimensional.

Definition 4.6. Complexification

♣

Let g be a Lie algebra over R. The complexification of g is the Lie algebra

gC = C⊗R g = g+ ig,

where the bracket is induced by the one on g.

Note that if {X1, . . . , Xn} is a basis of g over R, then {1⊗X1, . . . , 1⊗Xn} is a basis of gC

over C. Thus dimC gC = dimR g, but dimR gC = dimRC× dimR g = 2dimR g.

Corollary 4.5

♥

The Lie algebra g is solvable if and only if ad(gC) is upper-triangular with respect to some
basis {1⊗X1, . . . , 1⊗Xn}, where {X1, . . . , Xn} is a basis of g.

Proof (⇒) Let gC = g+ ig be the complexification of g. Since g is solvable, gC is solvable and,
by Lie’s Theorem ad : gC → gl(gC) is such that ad(gC) is upper triangular.

(⇐) Any Lie algebra of upper triangular matrices is solvable, hence ad(gC) is solvable. Moreover,
from ad(gC) = ad(g)+ iad(g) we deduce that ad(g) is solvable, since it is a subalgebra of ad(gC).
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We conclude from the short exact sequence

{0} → Z(g)→ g→ ad(g)→ {0}

that g is solvable, since Z(g) is Abelian and thus solvable.

Remark It is not true that if g is solvable then ad(g) is upper-triangular.

Application We will show that there are Lie groups which do not have faithful representations,
that is we will exhibit a Lie groupG such that for all π : G→ GL(n,C) there exists g ∈ G, g 6= e,
such that π(g) = I .

Let N =



1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 be the Heisenberg group, with center

H = Z(N) =



1 0 z

0 1 0

0 0 1

 z ∈ R

 .

Let us consider

D = H ∩ SL(3,Z) =



1 0 n

0 1 0

0 0 1

n ∈ Z

 .

We will show that if π : G→ GL(n,C) is any representation, then π(H/D) = {Id}, so that

G := N/D ∼=



1 x t

0 1 y

0 0 1

 : x, y ∈ R, t ∈ S1


does not have faithful complex representations.

Claim 4.1.1. π(H/D) ≤



1 ∗

. . .

1


 =: L.

Claim 4.1.2. L cannot have non-trivial compact subgroups, hence π(H/D) = {Id}.

Proof [Proof of Claim 4.1.2] We show that if K ≤ L is a non-trivial compact subgroup, K can
be conjugated into any neighborhood of Id ∈ GL(n,C), contradicting the “no small subgroup
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property” of the Lie group L (Theorem 3.12). To this purpose, let g =


λ1 0

. . .

0 λn

 ∈
GL(n,C) with 0 < λ1 < · · · < λn. Then if i < j:cg


1 ∗

. . .

1



ij

=



λ1 0

. . .

0 λn



1 ∗

. . .

1



λ−1
1 0

. . .

0 λ−1
n



ij

=

=
λi
λj


1 ∗

. . .

1


ij

⇒

⇒

cng

1 ∗

. . .

1



ij

=

(
λi
λj

)n
1 ∗

. . .

1


ij

.

Now if


1 ∗

. . .

1

 ∈ K, then the entries are bounded. Since λi/λj < 1 we have

(
λi
λj

)n
1 ∗

. . .

1


ij

→ 0 uniformly, and so cng


1 ∗

. . .

1

→ I uniformly.

Hence cng (K) is eventually contained in any neighbourhood of I .

Proof [Proof of Claim 4.1.1] We want to show that π(H/D) ≤ L, where

H/D =



1 0 t

0 1 0

0 0 1

 : t ∈ R/Z

 .

To this purpose, if we set ρ := deπ, it will be enough to show that

ρ(Lie(H/D)) ⊆




0 ∗ ∗

. . .
. . .

. . . ∗
0 0




⊆ gl(n,C) ,

where Lie(H/D) = Lie(H) =: h since D is discrete. Since h is Abelian, a direct application
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of Lie’s Theorem would imply that ρ(h) can be written in upper triangular form, which is not
enough as we need it to be strictly upper triangular. We can however argue as follows. Since

N =



1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

, then

n = Lie(N) =



0 ∗ ∗
0 0 ∗
0 0 0


 ⊆ gl(n,C) ,

which is solvable. By Lie’s Theorem ρ(n) is upper triangular and hence [ρ(n), ρ(n)] is strictly
upper triangular. But h = [n, n], so that ρ(h) = ρ([n, n]) = [ρ(n), ρ(n)] is strictly upper triangular,
as needed.

4.2 Nilpotency

We want to refine the notion of solvability. If g is a Lie algebra, we set inductively

C1(g) := [g, g]

Cn+1(g) := [g, Cn(g)] = ad(g)(Cn(g) = ad(g)n(g) .

Definition 4.7. Nilpotent Lie algebra

♣

Let g be a Lie algebra. We call

g ⊃ C1(g) ⊃ C2(g) ⊃ · · ·

the central series of g. We say that g is nilpotent if Cn(g) = {0} for some n.

Remark

1. By definition g(1) = C1(g) = [g, g]. Moreover g(2) = [g(1), g(1)] ⊂ [g, C1(g)] = C2(g)

and by induction

g(n) ⊂ Cn(g) .

Hence any nilpotent Lie algebra is solvable. We will see that the converse is not true, but
that g is solvable if and only if [g, g] is nilpotent (Proposition 4.6).

2. Each Cj(g) is a characteristic ideal, and moreover Cj(g)/Cj+1(g) is Abelian. In fact
[Cj(g), Cj(g)] ⊂ [g, Cj(g)] = Cj+1(g). This, however, is not the point of nilpotent Lie
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algebras. The important fact is that

Cj(g)/Cj+1(g) ⊆ Z(g/Cj+1(g)), (4.4)

which is much stronger than being Abelian. In particular it follows from (4.4) that if
Cn+1(g) = {0}, then Cn(g) ⊂ Z(g). Hence, for a solvable Lie algebra the last non-zero
ideal in the derived series is Abelian, while for a nilpotent Lie algebra the last non-zero
ideal in the central series is central. In particular a non-Abelian solvable Lie algebra with no
center cannot be nilpotent.

Example 4.4 g =

{(
∗ ∗
0 ∗

)
∈ sl(2,R)

}
is solvable but not nilpotent. In fact [g, g] ={(

0 ∗
0 0

)}
= g(1) = C1(g) is Abelian but C2(g) = [g, C1(g)] = C1(g). This is not surprising

since Z(g) = {0}.

Proposition 4.3

♠

Let g be a Lie algebra. The following are equivalent:
1. g is nilpotent.
2. There exists a chain of subalgebras g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gn = {0} such that

(a). gi+1 is an ideal in gi;
(b). [g, gi] ⊂ gi+1.

3. There exists p ∈ N such that ad(X1) ◦ · · · ◦ ad(Xp) = {0} for all X1, . . . , Xp ∈ g.

Proof (1)⇒ (2) Obvious.

(2)⇒ (1) The proof by induction is similar to the one for solvable Lie algebras. We have g = g0.

Then C1(g) = [g, g0]
(b)
⊂ g1, and inductively, if Ck(g) ⊂ gk, then Ck+1(g) = [g, Ck(g)] ⊂

[g, gk]
(b)
⊂ gk+1. Then gn = {0} implies Cn(g) = {0}.

(1)⇔ (3)This is obvious sinceCk(g) is generated by elements of the form ad(X1)◦· · · ad(Xk)(Y )

for X1, . . . , Xk, Y ∈ g.

Example 4.5 If g =



0 ∗

. . .

0

 ∈ gl(n,R)

, then g is nilpotent.

We saw that for solvable Lie algebras, if h ⊂ g is an ideal, then g is solvable if and only if h and
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g/h are solvable. The analogous statement for nilpotent Lie algebras cannot be true, because if it
were we could show that any solvable Lie algebra is nilpotent by induction on dim g. In fact, let us
assume that g is solvable. If g is one-dimensional then it is certainly nilpotent. If dim g > 1, given
any ideal h ⊂ g, both h and g/h are solvable. Since their dimension is smaller than the dimension
of g, they would be nilpotent by the inductive hypothesis and hence g would be nilpotent. The
correct statement instead is the following:

Proposition 4.4

♠

Let g be a Lie algebra and h ⊂ g an ideal.
1. If g is nilpotent, then h and g/h are nilpotent.
2. If g/h is nilpotent, and h ⊂ Z(g), then g is nilpotent.

In other words, it is not enough that h is nilpotent, but we need the stronger property that
h ⊂ Z(g).

Proof 1. is obvious from the definition.

2. If g/h is nilpotent, let g/h ⊃ h1 ⊃ · · · ⊃ hn = {0} be a chain of subalgebras with the properties
as in Proposition 4.3, namely

1. hj+1 ⊂ hj is an ideal and
2. [g/h, hj ] ⊂ hj+1.

If p : g→ g/h denotes the projection, which is a Lie algebra homomorphism and g ⊃ p−1(h1) ⊃
· · · ⊃ p−1(hn) = h ⊃ {0}, it is easy to check that

1. p−1(hj+1) ⊂ p−1(hj) is an ideal and
2. [g, p−1(hj)] ⊂ p−1(hj+1).

Since h ⊂ Z(g), then hn+1 := [g, h] = {0}, so that g is nilpotent.

Definition 4.8. Nilpotent Lie group

♣Let G be a connected Lie group. Then G is nilpotent if Lie(G) is nilpotent.

Proposition 4.5
Let G be a connected Lie group. The following are equivalent:

1. G is nilpotent.
2. There exists a sequence of closed connected normal subgroups Gi �G such that
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♠

(a). [G,Gi] < Gi+1 and
(b). G > G1 > · · · > Gn = {e}.

3. There exists a sequence of closed connected normal subgroups Gi �G such that
(a). Gi/Gi+1 < Z(G/Gi+1) and
(b). G > G1 > · · · > Gn = {e}.

Proof Similar to the solvable case presented in Proposition 4.2.

We gave an example to show that if g is solvable, then g is not neessarily nilpotent. The next
proposition shows something more precise.

Proposition 4.6

♠g is solvable if and only if [g, g] is nilpotent.

Proof (⇐) Suppose that [g, g] is nilpotent. Then [g, g] is solvable. So g is solvable, with the same
derived series as the one for [g, g] shifted by one.

(⇒) We will prove this implication in three steps.

(i) If g ⊂ gl(V ) is solvable, where V is a C-vector space, then by Lie’s Theorem g is upper
triangular. This implies that [g, g] is strictly upper triangular, and in particular nilpotent.

(ii) If g is a solvable complex Lie algebra but not necessarily g ⊂ gl(V ), by Lie’s Theorem
ad(g) ⊂ gl(g) is upper triangular. So [ad(g), ad(g)] = ad([g, g]) is strictly upper triangular,
hence nilpotent. To deduce that [g, g] is nilpotent, by Proposition 4.4 it suffices to show that
ker(ad|[g,g]) ⊆ Z([g, g]). But this is immediate since ker(ad) = Z(g) ⊆ Z([g, g]).

(iii) If now g is a real Lie algebra, let gC = g + ig be its complexification. If g is solvable,
then gC is solvable, so [gC, gC] is nilpotent by (ii). Since [g, g] ⊂ [gC, gC], we conclude that [g, g]
is nilpotent.

The next theorem has a formulation similar to that of Lie’s Theorem, but for nilpotent Lie
groups or Lie algebras. However it should be remarked that the theorem holds for any field, even
in positive characteristic.

Theorem 4.2. Engel’s Theorem
Let g ⊂ gl(V ) be a linear Lie algebra over a field K, V a K-vector space, and suppose
that for any X ∈ g, Xn = 0 for some n ∈ N, that is any element of g is a nilpotent
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♥

transformation. Then there exists a basis of V with respect to which g is strictly upper
triangular.

Remark It is not necessarily true that if g is nilpotent it is upper triangular. In fact, the Lie algebra
of diagonal matrices is nilpotent (since it is Abelian) but it does not necessarily have a realization
in which it is strictly upper triangular.

However we have:

Corollary 4.6

♥A Lie algebra g is nilpotent if and only if ad(g) is strictly upper triangular.

Proof (⇒) If g is nilpotent then ad(g)n = 0, that is ad(X) ∈ gl(g) is nilpotent for all X ∈ g.
By Engel’s Theorem ad(g) is strictly upper triangular.

(⇐) If ad(g) is strictly upper triangular, then it is nilpotent, and from the short exact sequence
{0} → Z(g)→ g→ ad(g)→ {0} we conclude that g is nilpotent as well.

Definition 4.9

♣

Let ρ : g→ gl(V ) be a representation of a Lie algebra g. A vector v ∈ V r{0} is a common
null vector of {ρ(X) : X ∈ g} if ρ(X)v = 0 for all X ∈ g.

To prove Engel’s Theorem 4.2 it is enough to prove the following:

Theorem 4.3

♥

Let g be a Lie algebra and ρ : g → gl(V ) a representation such that ρ(X) is nilpotent for
every X ∈ g. Then ρ(g) has a common null vector in V .

In fact, if this is true and V0 is the space of common null vectors, then we can write

ρ(g) ⊂

(
0dimV0 ∗

0 ∗

)
and proceed inductively by considering ρ : g→ gl(V/V0).

Lemma 4.4

♥Let g ⊆ gl(g) be a Lie algebra. If X ∈ g is nilpotent, then ad(X) is nilpotent.

Proof If X ∈ g, let lX , rX ∈ End(g) be the commuting endomorphisms defined as

lX(Y ) := XY and rX(Y ) := Y X .

Since X is nilpotent, l and r are nilpotent as well. Thus ad(X) = lX − rX ∈ End(g) is
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nilpotent.

Proof [Proof of Theorem 4.3] The proof will be by induction on dim g and in fact it will be similar
to the proof of Lie’s Theorem with the due modifications.

Let us assume that dim g = 1 and let 0 6= X ∈ g. Since ρ(X) nilpotent, let n ∈ N be the
smallest integer such that ρ(X)n = 0. Then there exists v ∈ V such that ρ(X)n−1v 6= 0. But
0 = ρ(X)nv = ρ(X)(ρ(X)n−1v), so ρ(X)n−1v is a null vector of X and thus of RX = g.

Let us suppose now that dim g > 1. Assume that every Lie algebra of dimension smaller than
dim g satisfies the theorem. We can assume that ρ is faithful, otherwise g/ ker ρ would be a Lie
algebra of smaller dimension, for which the assertion is true. The proof consists of two steps:

1. We write g = RX0 ⊕ h where h is an ideal in g.
2. We find a null vector for X0 in the space of common null vectors for h.

1. Let h be a maximal proper subalgebra and consider adg(X) : g→ g for X ∈ g. If X ∈ h,
since h is a subalgebra we have adg(X)(h) ⊂ h. Thus there is a representation of h on g/h,
ad: h → gl(g/h). Since g ∼= ρ(g) consists of nilpotent elements, so does h, and hence so does
ad(h) ⊂ gl(g/h) by Lemma 4.4. By the inductive hypothesis there exists 0 6= X0 ∈ g/h such that
ad(h)X0 = 0 ∈ g/h, that is ad(h)X0 ⊂ h. Thus

[RX0 ⊕ h,RX0 ⊕ h] = R[X0, X0] + R[X0, h] + R[h, h] ⊂ 0 + h+ h = h,

that is RX0 ⊕ h is a subalgebra that contains h. Since h was maximal, RX0 ⊕ h = g and h is an
ideal.

2. By inductive hypothesis the space W of null vectors of ρ(h) is non-zero. If we can prove
that it is X0-invariant, then we can apply the inductive hypothesis to ρ : RX0 → gl(W ) and find a
null vector in W that will be a null vector for g. So let w ∈ W , that is ρ(X)w = 0 for all X ∈ h.
We want to show that ρ(X0)w ∈ W , that is ρ(X)ρ(X0)w = 0 for all X ∈ h. Since h is an ideal,
then XX0 −X0X = [X,X0] ∈ h. Thus

ρ(X)ρ(X0)w = ρ([X,X0])w + ρ(X0)ρ(X)w = 0 + ρ(X0)0 = 0.

In the course of the proof, we have also obtained the following:
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Corollary 4.7

♥

If g is nilpotent, and h is a maximal subalgebra of g, then h is an ideal, [g, g] ⊂ h and h has
codimension 1.

We have proved this under the assumption that elements of g are nilpotent. The proof of this
fact only needed that elements of ad(g) are nilpotent, and so assuming that g is nilpotent is enough.

Definition 4.10. Unipotent linear group

♣

Let V be a vector space over a field K and let G < GL(V ) be a linear group. Then G is
unipotent if

G ≤ {g ∈ GL(V ) : (g − Id)n = 0} ,

where n = dimV .

Corollary 4.8

♥

If G < GL(V ) is a unipotent group there exists a basis of V such that G ≤

1 ∗

. . .

0 1

 ∈ GL(V )

. Thus any unipotent connected group is nilpotent.

4.2.1 The Killing Form

There are other characterizations of nilpotent and solvable Lie algebras that use the Killing
form, a particular case of the trace form.

Let V be a vector space over a field K = R or C. We recall that the trace of A ∈ End(V )

is defined as trA =
∑
λi, where λi are the eigenvalues of A. Note that a priori tr(A) will take

values in the algebraic closure of K. The following properties are satisfied:

1. tr(XAX−1) = trA for all X ∈ GL(V ), that is tr : GL(V ) → K is independent of the
choice of basis in V .

2. tr(AB) = tr(BA);
3. If we choose a basis of V and let (aij)ij be the matrix representation of A with respect to it,

then trA =
∑
aii.
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Definition 4.11. Trace form and Killing form

♣

Let K = R or C.
1. The trace form is the bilinear symmetric form

B : Kn×n ×Kn×n −→ K

(X,Y ) 7→ tr(XY ) .

Let g be a Lie algebra over K.
2. If ρ : g→ gl(n,K) is a Lie algebra representation, the trace form of ρ is

Bρ : g× g −→ K

(X,Y ) 7→ B(ρ(X), ρ(Y )) = tr(ρ(X)ρ(Y )) .

3. The Killing form of g is Bg := Bad : g× g→ K, that is

Bg(X,Y ) = tr(ad(X)ad(Y )) .

Definition 4.12. Invariant bilinear form

♣

Let V be a vector space over K, f : V × V → K a bilinear form, G ≤ GL(V ), g ⊆ gl(V ).
1. f is G-invariant if f(AX,AY ) = f(X,Y ) for all X,Y ∈ V and all A ∈ G.
2. f is g-invariant if f(DX,Y ) + f(X,DY ) = 0 for all X,Y ∈ V and all D ∈ g.

Proposition 4.7

♠

Let V be a finite dimensional vector space over K f : V × V → K be a bilinear form and
A ∈ End(V ). The following are equivalent:

1. f(AX,Y ) + f(X,AY ) = 0 for all X,Y ∈ V
2. f((exp tA)X, (exp tA)Y ) = f(X,Y ) for all X,Y ∈ V and all t ∈ R.

Proof (2.⇐ 1.) This follows just from differentiating the expression f((exp tA)X, (exp tA)Y ) =

f(X,Y ).

(1. ⇒ 2.) We will show that φ(t) := f((exp tA)X, (exp tA)Y ) and ψ(t) = f(X,Y ) are both
solutions of the differential equation dz

dt = 0 with z(0) = f(X,Y ). Obviously this is the case for
ψ(t). By differentiating φ(t) we obtain

φ′(t) = f(A(exp tA)X, (exp tA)Y ) + f((exp tA)X,A(exp tA)Y ) .

Then using 1. after replacingX by (exp tA)X and Y by (exp tA)Y , we obtain that φ′(t) = 0.
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Corollary 4.9

♥

Let G ≤ GL(V ) be a closed subgroup with Lie algebra g and let f : V × V → R be a
bilinear form. Then f is G-invariant if and only if it is g-invariant.

Proposition 4.8

♠

Let g be a Lie algebra, ρ : g → gl(n,K) a representation. Then Bρ is ad(g)-invariant. In
particular the Killing form is ad(g)-invariant.

Proof Recall that if S, T ∈ End(V ), then tr(ST ) = tr(TS). If X,Y, Z ∈ g then

Bρ(ad(X)Y, Z) = Bρ([X,Y ], Z) = tr(ρ([X,Y ])ρ(Z))

= tr(ρ(X)ρ(Y )ρ(Z)− ρ(Y )ρ(X)ρ(Z))

= tr(ρ(Y )ρ(Z)ρ(X)− ρ(Y )ρ(X)ρ(Z))

= tr(ρ(Y )ρ([Z,X]) = −tr(ρ(Y )ρ([X,Z]))

= −Bρ(Y, [X,Z]) = −Bρ(Y, ad(X)Z).

We will see that the Killing form is a powerful tool in the theory of Lie groups and Lie algebras.
For example we have:

Corollary 4.10. Cartan’s Criterion for solvability

♥
Let g be a Lie algebra with Killing formBg. Then g is solvable if and only ifBg|g(1)×g(1) ≡ 0.

The proof of Cartan’s Criterion relies upon the following theorem, where the meat of the
argument is and which we prove at the end of this section.

Theorem 4.4

♥

Let V be a finite dimensional complex vector space and let g ⊂ gl(V ) be a Lie algebra. If
tr(XY ) = 0 for all X,Y ∈ g, then there exists a basis of V with respect to which g(1) is
strictly upper triangular. In particular g(1) is nilpotent and g is solvable.

We will start the proof of Cartan’s Criterion with a preliminary result:

Lemma 4.5

♥Let h ⊂ g be an ideal. Then Bh = Bg|h×h.

Remark To have that adh(X) = adg(X)|h for all X ∈ h it is enough that h is a subalgebra. To
say that Bh = Bg|h×h we need that h is an ideal.
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Proof [Proof of Lemma 4.5] Let V be a linear complement of h, so g = h ⊕ V . Then
adg(X) : h⊕ V → h⊕ V is such that if X ∈ h, then

1. adg(X)Y = [X,Y ] ∈ h if Y ∈ h (since h is a subalgebra) but also
2. adg(X)Y = [X,Y ] ∈ h if Y ∈ V (since h is an ideal).

Hence

adg(X) =

 adh(X) ∗
0︸︷︷︸

h is a subalgebra

0︸︷︷︸
h is an ideal


so that tr(adg(X)adg(Y )) = tr(adh(X)adh(Y )) for all X,Y ∈ h.

Proof [Proof of Corollary 4.10] (⇒) Suppose that g is solvable. Then by Proposition 4.6
g(1) = [g, g] is nilpotent. Hence by Corollary 4.6 ad(g(1)) is strictly upper triangular. This implies
that Bg|g(1)×g(1) = Bg(1) = 0, where we applied the previous lemma to the ideal g(1) � g.

(⇐) By Theorem 4.4 applied to ad(g)(1) = ad(g(1)), if X,Y ∈ g(1) and 0 = Bg(X,Y ) =

tr(ad(X)ad(Y )), then [ad(g(1)), ad(g(1))] = ad([g(1), g(1)]) = ad(g(2)) is strictly upper
triangular and hence nilpotent, hence solvable. We need to show that g is solvable.

Since ad(g(2)) is a solvable ideal in ad(g(1)) and ad(g(1))/ad(g(2)) = ad(g(1)/g(2)) is
Abelian, hence solvable, ad(g(1)) is solvable. Analogously, ad(g(1)) is a solvable ideal in ad(g)

and ad(g)/ad(g(1)) = ad(g/g(1)) is Abelian, hence solvable, so ad(g) is solvable. Finally the
short exact sequence 0→ Z(g)→ g→ ad(g)→ 0 shows that g is solvable.

In order to prove Theorem 4.4 we need a result that is a corollary of the Jordan canonical form
over C.

Proposition 4.9

♠

Let V be a finite dimensional vector space over C and let A ∈ End(V ). Then there exist a
diagonalizable S ∈ End(V ) and a nilpotent N ∈ End(V ) such that

1. A = S +N ;
2. SN = NS;
3. S and N are uniquely determined, and
4. there exist polynomials s(X), n(X) ∈ C[X] without constant terms, such that

S = s(A) and N = n(A) .

We say that N is the nilpotent component of A amd S is the semisimple component of A. For
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a proof of Proposition 4.9 see [8, Proposition 12.19].

Example 4.6 LetX ∈ gl(n,C). ThenX = S+N and ad(X) ∈ gl(gl(n,C)) has a decomposition

ad(X) = ad(S) + ad(N) . (4.5)

In fact:

1. S is diagonalizable and hence ad(S) is diagonalizable;
2. N is nilpotent and hence ad(N) is nilpotent;
3. [N,S] = 0 and hence [ad(N), ad(S)] = ad([N,S]) = 0.

Thus (4.5) is the decomposition of ad(X). Moreover ad(N) and ad(S) are polynomials in ad(X).
Notice that this is not obvious a priori, since ad is only a Lie algebra homomorphism and not an
algebra homomorphism. Hence if S = s(X) and N = n(X), there exist n′, s′ ∈ C[X] such that

n′(ad(X)) = ad(N) and s′(ad(X)) = ad(S) . (4.6)

In particular if g ⊆ gl(n,C) and X ∈ g, it follows from (4.6) that ad(S) and ad(N) leave g

invariant.

Proof [Proof of Theorem 4.4] Because of Engel’s Theorem, it will be enough to prove that every
A ∈ g(1) is nilpotent. We know from Proposition 4.9 that A = S +N , where S is diagonalizable
andN is nilpotent. Hence it will be enough to show that S = 0. To this purpose we will show that
if

S =


λ1 0

. . .

0 λn

 and S =


λ1 0

. . .

0 λn

 ,

then tr(SS) =
∑
λiλj = 0, hence showing that S = 0.

Since A = S +N , we have that

tr(SS) = tr((A−N)S) = tr(AS)− tr(NS), .

Observe that, by hypothesis, tr(XY ) = 0 for all X,Y ∈ g, but a priori S and N are only in gl(V )

and not necessarily in g. We will hence show the following facts:

1. tr(AS) = 0;
2. tr(NS) = 0.

To prove both statements it will be useful to consider a polynomial p ∈ C[X] such that
p(λi) = λi for i = 1, . . . , n. For example one can take p(x) =

∑n
j=1 λj

∏
i ̸=j

x−λi
λj−λi . Then
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p(S) = S.

To prove 1. remember that A ∈ g(1), so that A =
∑k

i=1[Xi, Yi] for xi, Yi ∈ g. Then

tr(AS) = tr

(
k∑
i=1

[Xi, Yi]S

)
= tr

(
k∑
i=1

(XiYi)S −
k∑
i=1

(YiXi)S

)

=
k∑
i=1

tr(YiSXi − SYiXi) =
k∑
i=1

tr([Yi, S]Xi) = −
k∑
i=1

tr((ad(S)Yi)Xi) .

Since Xi ∈ g and we know that tr(XY ) = 0 for all X,Y ∈ g, it will be enough to show that
ad(S)Yi ∈ g, that is that ad(S)(g) ⊆ g. But S = p(S) and S is a polynomial in A, so that S as
well is a polynomial in A. By the Example 4.6, ad(q(A)) = q′(ad(A)), that is ad(q(A))g ⊆ g.

To prove 2. recall that [S,N ] = 0. Moreover [S,N ] = 0, since, if N commutes with S, it
commutes with all powers of S, and hence with a polynomial in S. Thus (NS)ℓ = N ℓS

ℓ
= 0 as

soon as N ℓ = 0.

4.3 Semisimplicity

We start by describing Lie algebras that, contrary to nilpotent and solvable ones, have no
non-trivial ideals.

Definition 4.13. (Semi)simplicity

♣

a) A Lie algebra g is simple if
(i) It is not Abelian;
(ii) Its only ideals are {0} and g.

b) A Lie algebra is semisimple if it is the direct sum of simple ideals.
c) A connected Lie group is simple (respectively semisimple) if its Lie algebra is simple

(respectively semisimple).

Theorem 4.5. (Dieudonné)

♥Let g be a Lie algebra. Then g is semisimple if and only if Bg is non-degenerate.

Remark 4.3 If h is an ideal in g and g = h⊕V , then using that adg(h)(g) ⊂ h and adg(g)(h) ⊂ h,
we have that

adg(h) ⊆

(
adh(h) ∗

0 0

)
and adg(g) ⊆

(
∗ ∗
0 ∗

)
.
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Hence if X ∈ h and Y ∈ g, then

adg(X)adg(Y ) ⊆

(
∗ ∗
0 0

)(
∗ ∗
0 ∗

)
=

(
∗ ∗
0 0

)
.

We will need the following lemma.

Lemma 4.6

♥

Let g be a Lie algebra and let h ⊂ g be an ideal. Then

h⊥ = {X ∈ g : Bg(X,A) = 0 for all A ∈ h}

is also an ideal.

Proof Let X ∈ h⊥, that is Bg(X,A) = 0 for all A ∈ h. We want to show that for all Y ∈ g also
Bg([X,Y ], A) = 0 for all A ∈ h. In fact:

Bg([X,Y ], A) = −Bg(ad(Y )(X), A) = Bg(X, ad(Y )(A)) = Bg(X, [Y,A]) = 0

since [Y,A] ∈ h.

Proof [Proof of Theorem 4.5] (⇒) Since g =
⊕

gi, where the gi are simple ideals, then
Bg =

∑
Bgi and we may as well assume that g is simple. Let g⊥ = {Y ∈ g : Bg(X,Y ) =

0 for all X ∈ g}. Then g⊥ is an ideal by the previous lemma, and since g is simple either g⊥ = (0)

or g⊥ = g. If g⊥ = g, then Bg ≡ 0, and so g is solvable by Cartan’s criterion. Hence g⊥ = (0),
and so Bg is non-degenerate.

(⇐) The proof will follow the following steps. Assume that Bg is non-degenerate.

1. There are no Abelian ideals.
2. If h ⊂ g is a non-trivial ideal, then g = h⊕ h⊥.
3. Bh and Bh⊥ are non-degenerate.
4. Argue by induction.

1. If a were an Abelian ideal, then Za(a) = a and so adg(A) =

(
0 ∗
0 0

)
for all A ∈ a. Thus

for all Y ∈ g

Bg(A, Y ) = tr(adg(A)adg(Y )) = tr

((
0 ∗
0 0

)(
∗ ∗
0 ∗

))
= tr

((
0 ∗
0 0

))
= 0 ,

hence Bg would be degenerate.

2. Because of the previous lemma we need to check that h ∩ h⊥ = (0). In fact:



4.3 Semisimplicity – 121 –

(a). h ∩ h⊥ is an ideal, being the intersection of ideals.

(b). h ∩ h⊥ is Abelian. In fact if X,Y ∈ h ∩ h⊥, then for all Z ∈ g:

Bg([X,Y ], Z) = −Bg(Y, [X,Z]) ∈ Bg(h, h
⊥) = 0 .

Since Bg is non-degenerate, this implies that [X,Y ] = 0 for all X,Y ∈ h ∩ h⊥.

Thus (a) and (b) imply that h ⊕ h⊥ ⊆ g. Moreover, since Bg is non-degenerate,
dim g = dim h+ dim h⊥ − dim h ∩ h⊥ = dim h+ dim h⊥, and so equality holds.

3. Let X ∈ h and Y ∈ g be such that Bg(X,Y ) 6= 0 and let Y = Yh + Yh⊥ with Yh ∈ h and
Yh⊥ ∈ h⊥. Then

0 6= Bg(X,Y ) = tr(adg(X)adg(Y )) = tr

((
∗ ∗
0 0

)(
∗ ∗
0 ∗

))
= tr

((
∗ ∗
0 0

))
=

= tr(adg(X)adg(Y )|h) = tr(adg(X)adg(Yh)|h + adg(X)adg(Yh⊥))x3|h =
(∗)
= tr(adg(X)adg(Yh)|h)

(∗∗)
= tr(adh(X)adh(Yh)) = Bh(X,Yh) ,

where (∗) follows since ad(h⊥)|h = 0 because [h⊥, h] ⊂ h⊥∩h = {0} and (∗∗) from Remark 4.3.
Thus Bh is non-degenerate. Similarly, h⊥ is non-degenerate.

4. If h and h⊥ are simple we have found a decomposition of g as direct sum of simple ideals. If
either one is not, we choose a non-trivial ideal and repeat the argument. Since dim h < dim g, the
process ends with a decomposition as direct sum of simple ideals.

To see how to determine the non-degeneracy of the Killing form, we prove the following
theorem:

Theorem 4.6

♥

Let K = R or C. If g ⊂ gl(n,K) is self-adjoint with respect to some inner product in Kn

and Zg(g) = {0}, then Bg is non-degenerate.

Remark 1. Since ker ad = Z(g) is an ideal, then Z(g) = {0} is obviously necessary.

2. There is a theorem of Mostow that states that any semisimple Lie algebra has a faithful linear
representation whose image is self-adjoint, hence the above theorem gives somehow a necessary
and sufficient condition for semisimplicity. Define

Zg(g) and
decide
about the
subscript

Example 4.7

1. sl(n,R) = sl(n,R)∗ and sl(n,C) = sl(n,C)∗.
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2. so(n,R) = so(n,R)∗, n ≥ 3.
3. so(p, q) = so(p, q)∗.
4. su(n) = su(n)∗.

Hence these are all semisimple (and in fact, simple) Lie algebras.

Lemma 4.7

♥

Let K = R or C.
1. The trace form is non-degenerate.
2. If W ⊂ Kn×n is a subspace that is self-adjoint with respect to some inner product in

Kn, then B|W×W is non-degenerate.

Proof 1. For X ∈ Kn×n, let X∗ be the adjoint with respect to the usual inner product in Kn, that
is X∗ = tX if K = R and X∗ = tX if K = C. Let us define

B∗(X,Y ) := B(X,Y ∗) = tr(XY ∗) =
∑
i,j

XijY ij

Then B∗ is the usual inner product on Kn×n and B(X,X) = B∗(X,X∗) = ‖X‖2 > 0 if X 6= 0,
so that B is non-degenerate.

2. Follows from the proof of 1., since if X ∈W then X∗ ∈W .

Proof [Proof of Theorem 4.6] We start with a few observations. Let tr : gl(n,K)×gl(n,K)→ K
be the trace form. Then the Killing form is the composition of the following maps:

g× g
adg×adg−−−−−→ adg(g)× adg(g)

i−→ gl(g)× gl(g)
tr−→ K.

If Z(g) = {0} then g ∼= adg(g), so it will be enough to show that:

Claim 4.3.1. If g ⊆ gl(n,K) is self-adjoint with respect to an inner product in Kn, then
adg(g) ⊆ gl(g) is self-adjoint with respect to an inner product in Kn×n.

In fact, assuming the claim, we can apply Lemma 4.7 (2) with W = adg(g) and conclude the
proof.

To prove the claim we will need two lemmas.

Lemma 4.8
Let 〈·, ·〉+ : gl(n,K)×gl(n,K)→ K be the inner product defined by 〈X,Y 〉+ = tr(XY ∗),
and let adgl(n,K) : gl(n,K)→ gl(gl(n,K)) be the adjoint representation of gl(n,K).
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♥

Then adgl(n,K)(A)
∗ = adgl(n,K)(A

∗), whereA∗ is the adjoint with respect to the usual inner
product in Kn×n and adgl(n,K)(A)

∗ is the adjoint with respect to the inner product 〈·, ·〉+.

Proof We need to verify that 〈X, adgl(n,K)(A
∗)Y 〉+ = 〈adgl(n,K)(A)X,Y 〉+. In fact

〈X, adgl(n,K)(A
∗)Y 〉+ = 〈X, [A∗, Y ]〉+ = tr(X[A∗, Y ]∗) = tr(X(A∗Y − Y A∗)∗)

= tr(X(Y ∗A−AY ∗)) = tr(XY ∗A)− tr(XAY ∗)

= tr(AXY ∗)− tr(XAY ∗) = tr((AX −XA)Y ∗)

= tr([A,X]Y ∗) = 〈[A,X], Y 〉+ = 〈adgl(n,K)(A)X,Y 〉+.

The point of the lemma is that now we know that if g ⊆ gl(n,K) is self-adjoint, then
adgl(n,K)(g) ⊆ gl(gl(n,K)) is self-adjoint. This is however not quite enough, as we want to see
that adg(g) ⊆ gl(g) is self-adjoint. Since g ⊆ gl(n,K) is a subalgebra, it is easy to see that

adgl(n,K)(g) ⊆

(
adg(g) ∗

0 0

)
,

that is if A ∈ g ⊆ gl(n,K), then adg(A) = adgl(n,K)(A)|g. It will be hence enough to prove the
following lemma, with g = V , adgl(n,K)(g) = h and n2 = m.

Lemma 4.9

♥

Let K = R or C. If h ⊂ gl(m,K) is a self-adjoint Lie algebra, with respect to some inner
product on Km and V ⊂ Km is an h-invariant subspace, then h|V is self-adjoint.

Proof Since h = h∗, then if V is h-invariant so is V ⊥. In fact, let Km = V ⊕ V ⊥. For all H ∈ h

we have HV ⊂ V , and if v ∈ V ⊥ we want to see that Hv ∈ V ⊥ as well for all H ∈ h. But
Hv ∈ V ⊥ if and only if 〈Hv,w〉 = 0 for all w ∈ V . In fact 〈Hv,w〉 = 〈v,H∗w〉 = 0, since
H∗ ∈ h and soH∗w ∈ V . So ifH ∈ h, we can writeH = HV ⊕HV ⊥ andH∗ = H∗

V ⊕H∗
V ⊥ .

Corollary 4.11

♥

Let V be a C-vector space. If g ⊂ sl(V ) is an irreducible and self-adjoint Lie algebra (with
respect to some inner product on V ), then Zg(g) = {0} and hence Bg is non-degenerate.

Here irreducible means as an algebra of endomorphisms that is, there are no non-trivial g-
invariant subspaces in V . For example the Lie algebras sl(V ) and su(n) act respectively on V and
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Cn irreducibly, hence we deduce that they are semisimple.

The proof of Corollary 4.11 relies upon this classical result in representation theory. There
are several version of it, but we will need the most elementary one.

Lemma 4.10. (Schur)

♥

Let g be a Lie algebra acting irreducibly on a complex vector space V and let A : V → V

be an endomorphism that commutes with g. Then A = cI for some c ∈ C.

Proof Let λ ∈ C be an eigenvalue of A and consider the endomorphism A − λId, which also
commutes with g. It is straightforward to check that ker(A − λId) is a g-invariant subspace.
Since the action of g is irreducible and ker(A − λId) 6= {0}, then ker(A − λId) = V , that is
A = λId.

Proof [Proof of Corollary 4.11] Let A ∈ g ⊂ gl(V ) be an endomorphism that commutes with g.
Then A = cI by Schur’s Lemma. Now if A ∈ Zg(g) ⊂ g ⊂ sl(V ), then 0 = trA = cdimV , and
so A = 0.

Remark The non-degeneracy of Bg characterizes semisimple Lie algebras, but in general Bg is
not definite. In fact, we will see that the definiteness of Bg is equivalent to compactness within the
semisimple Lie algebras.

Before we move to the next section, we give a bit more details on the structure of semisimple
Lie algebras.

Proposition 4.10

♠

Let g =
⊕

i∈I gi be the direct sum of simple ideals over some index set I . Then any ideal
h ⊂ g is of the form h =

⊕
i∈J gi with J ⊂ I .

Proof Let J ⊂ I be the smallest subset such that h ⊆
⊕

i∈J gi. We are going to show that
there is equality. Let i ∈ J . Then [h, gi] ⊆ gi, since gi is an ideal; moreover, since [h, gi]gi is an
ideal, either [h, gi] = gi or [h, gi] = {0}. We will show that [h, gi] 6= {0} for every i ∈ J , so that
gi = [h, gi] ⊂ h, which implies that h =

⊕
i∈J gi.

To see that [h, gi] 6= {0}, letX ∈ h be such thatX = X1+· · ·+Xn withXj ∈ gj and |J | = n.
If [h, gj ] = {0}, the in particular [X, gj ] = {0}, so that [Xj , gj ] = {0}. Thus Xj ∈ Zgj (gj) = 0,
contradicting the minimality of J .
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Corollary 4.12

♥

1. Any semisimple Lie algebra has a finite number of ideals.
2. Any connected semisimple Lie group with finite center has a finite number of connected

normal subgroups.

Proposition 4.11

♠

Let g be a Lie algebra. The following are equivalent:
1. g is semisimple;
2. g has no non-trivial Abelian ideals;
3. g has no non-trivial solvable ideals.

Corollary 4.13

♥

1. G is a connected simple Lie group if and only if every connected normal proper
subgroup of G is trivial. In particular the center Z(G) of a connected simple Lie
group is discrete.

2. G is a connected semisimple Lie group if and only if it has no non-trivial connected
normal Abelian subgroups.

3. G is a connected semisimple Lie group if and only if it has no non-trivial connected
normal solvable subgroups.

Remark To go from Proposition 4.11 to Corollary 4.13 one uses Proposition 3.16. Also, concerning
1. in Corollary 4.13, observe that, as we proved in Proposition 2.1.6., asG is connected, any discrete
normal subgroup is contained in the center of G.

Proof [Proof of Proposition 4.11] (1.⇒ 2.) This is clear from Proposition 4.10.

(2. ⇒ 3.) If there were to exist a solvable ideal h, then there would be a descending series of
ideals h ⊃ h(1) ⊃ · · · ⊃ h(n) = {0} and h(n−1) would be Abelian. Moreover, since the h(i) are
characteristic ideals in h(i−1), h(n−1) would be an Abelian ideal in g.

(3. ⇒ 1.) It is enough to see that Bg is non-degenerate. Let h ⊂ g be the kernel of Bg, that is
h = {X : Bg(X,Y ) = 0 for all Y ∈ g}. Since Bg is adg-invariant, then h is an ideal and, by
Lemma 4.5, Bh = Bg|h×h. Thus h would be solvable, which contradicts the hypothesis. Thus
h = {0} and hence Bg is non-degenerate.
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Proposition 4.12

♠If g is semisimple, then g = [g, g].

Proof Let g =
⊕

i∈I gi, where |I| < ∞ and the gi are simple ideals. If i 6= j,
[gi, gj ] ⊂ gi ∩ gj = {0}, while [gi, gi] is an ideal in gi. Since the gi are simple, hence in
particular not Abelian, [gi, gi] = gi. Thus

[g, g] =

[⊕
i∈I

gi,
⊕
i∈I

gi

]
=
⊕
i∈I

[gi, gi] =
⊕
i∈I

gi = g .

4.4 Levi Decomposition

We see now how to put together semisimplicity and solvability in a general Lie group.

Lemma 4.11

♥If a and b are solvable ideals in a Lie algebra g, then a+ b is a solvable ideal.

Proof The assertion is immediate from the short exact sequence

{0} //a �
� //a+ b //(a+ b)/a ' b/(a ∩ b) // //{0} .

There is an analogous statement for nilpotent ideals. The proof requires some more work, but
it is easy to convince oneself that the statement is true by looking at the effect of taking the bracket.

Remark. We can only write a+ b and not a⊕ b as, a priori, a ∩ b 6= {0}.

Corollary 4.14

♥

For any Lie algebra g there exists a unique maximal solvable ideal r ⊆ g and g/r is
semisimple. Thus g is semisimple if and only if r = {0}.

Definition 4.14. (Solvable) radical

♣The unique maximal solvable ideal of g is called the (solvable) radical of g.

Proof [Proof of Corollary 4.14] The existence and uniqueness follow from Lemma 4.11 and from
the finite dimensionality of g. To show that g/r is semisimple, let h/r ⊆ g/r be a solvable ideal in
g/r. Then h ⊆ g is an ideal and since r and h/r are solvable, it follows that h is solvable. Since r

is maximal, then h ⊆ r, so that h/r = {0} and g/r has no solvable ideals.
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On the group level we have the following:

Corollary 4.15

♥

Let G be a connected Lie group and R the connected subgroup corresponding to r ⊆ g.
ThenR is a solvable connected closed normal subgroup andG/R is a semisimple Lie group.

Proof The only thing to show is that R is closed. Let R be the closure of R and let r′ be the
corresponding Lie algebra. By maximality of r, it will be enough to show that r′ is solvable.
Observe that if H is a connected Lie subgroup with Lie(H) = h, then

H is solvable ⇔ h is solvable

⇔ ad(hC) = ad(h)C is upper triangular

⇔ Ad(H)C is upper triangular.

Thus, since R is solvable, Ad(R)C is upper triangular and, by continuity, Ad(R)C is upper
triangular, that is R is solvable and r′ is solvable.

Remark Even though R is the maximal closed connected normal solvable subgroup, there might
be larger solvable subgroups that are not connected.

For a general Lie algebra g we have then the short exact sequence

{0} //r �
� //g //g/r // //{0} ,

where r is the radical of g and g/r is semisimple. It is natural to ask whether or not the sequence
splits, that is whether or not we can write g = s ⊕ r, where r is the solvable radical and s is a
semisimple subalgebra isomorphic to g/r.

Theorem 4.7. Levi Decomposition

♥

Given any finite dimensional Lie algebra g there exists a semisimple subalgebra s ⊆ g such
that g = s ⊕ r as vector spaces and s ' g/r as Lie algebras. Then s is called the Levi
subalgebra or Levi factor or semisimple factor of g.
The ideal r is canonically determined by g, but if s is a Levi subalgebra and φ ∈ Aut(g),
then φ(s) is another Levi subalgebra and any Levi subalgebra arises in this way. Moreover
Levi subalgebras are maximal with respect to the property of being semisimple.

To better understand Levi’s theorem we need the notion of semidirect product of Lie algebras
and Lie groups.

We saw in § 2.1 the definition of semidirect product of topological groups H,N . It is easy
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to see that if H,N are two Lie groups the semidirect product H n N is the Lie group with the
manifold structure of the product H ×N .

Definition 4.15

♣

Let h, n be two Lie algebras and ρ : h → Der(n) a Lie algebra homomorphism. The
semidirect product hnρ n is the vector space h× n with bracket

[(H1, N1), (H2, N2)] := ([H1,H2], [N1, N2] + ρ(H1)N2 − ρ(H2)N1))

for all H1,H2 ∈ h and all N1, N2 ∈ n Thus h nρ n is a Lie algebra (with Jacobi identity
following from the fact that ρ is a Lie algebra homomorphism) and n is an ideal in hnρ n.

Parallel to Lemma 2.1, in the case of Lie algebras we have the following:

Lemma 4.12

♥

Let g be a Lie algebra, h ⊂ g a subalgebra and n ⊂ g an ideal. The following are equivalent:
1. There exists a Lie algebra homomorphism ρ : h→ Der(n) such that g = hnρ n;
2. g = h⊕ n;
3. g is a Lie algebra extension of n by h, that is there exists a short exact sequence

{0} //n �
� //g //h // //{0} ,

that splits, that is the composition p ◦ i : h→ g/n of the embedding i : h ↪→ g and of
the natural projection p : g→ g/n is a Lie algebra isomorphism.

It is easy to see that ifG = HnηN is a semidirect product of Lie groups with η : H → Aut(N)

a smooth homomorphism, then g = hnρ n is a semidirect product of the respective Lie algebras,
where ρ := dηe : h→ Der(n).

Hence Levi’s Theorem says that g is isomorphic as a vector space to s ⊕ r and as a Lie
algebra to snρ r with respect to some homomorphism ρ : s→ Der(r). Clearly changing the Levi
subalgebra amounts to changing the homomorphism and there is no canonical Levi factor.

Example 4.8 Let V ⊂ Rn be a subspace and g = {X ∈ gl(n,R) : X(V ) ⊂ V } =

{(
∗V ∗
0 ∗

)}
.

Let n =

{(
0 ∗
0 0

)}
⊂ g and a =

{(
λ1I 0

0 λ2I

)
λi ∈ R

}
⊂ g. Then n is a nilpotent ideal in g

and a is an Abelian subalgebra. We claim that a+ n is a solvable ideal. In fact one can check that
[a+n, g] ⊂ n ⊂ a+n, so a+n is an ideal. Furthermore [a+n, a+n] = [a, n]+[a, a]+[n, n] ⊂ n,
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so (a+ n)(1) = [a+ n, a+ n] ⊂ n is nilpotent, and hence a+ n is solvable.

If dimV = k, it is easy to see that g/(a + n) is isomorphic to the Lie algebra

s =

(
sl(k,R) 0

0 sl(n− k,R)

)
, hence it is semisimple. Thus a + n is the solvable radical of

g, s is a Levi factor and g = sn (a+ n).

Corollary 4.16

♥

Let G be a simply connected Lie group and R its solvable radical. Then there exists a
semisimple simply connected Lie subgroup S of G such that G, as a Lie group, is the
semidirect product of S by R, G = S n R. All subgroups S ≤ G that may occur in this
decomposition are isomorphic.

Example 4.9 Let G = GL(n,R),H = Rn, η : G → Aut(Rn) a smooth homomorphism and let

us consider the group Gnη Rn =: G′ of affine motions of Rn. Then G′ =

(
η(G) Rn

0 1

)
, where

(A, v) ∈ G′ acts on Rn by x 7→ η(A)x + v, and the multiplication in G′ is the composition of
affine transformations.

Since Z(G) consists of the group of scalar matrices, G = GL(n,R) is not semisimple and
hence G′ = G nη Rn is not the Levi decomposition of G′. Let A = {λId : λ ∈ R r {0}} <
GL(n,R) and let us consider the group R = Anη Rn < Gnη Rn. Then Lie(G′/R) = sl(n,R),
SL(n,R) is a Levi factor of G′ and AnRn is the radical of G′.

4.5 Compact Groups

Let V be a finite dimensional vector space over K = R or C, let G be a compact Lie group
and let π : G→ GL(V ) be a representation. Then π is equivalent to an orthogonal representation
of G, that is there exists a positive-definite inner product 〈·, ·〉 on V such that π(G) ⊆ O(V, 〈·, ·〉).
In fact, if (·, ·) is any inner product on V and µ is the Haar measure of G, then one can show that
for v, w ∈ V

〈v, w〉 :=
∫
G
(π(g)v, π(g)w)dµ(g)

is a positive definite inner product on V that is π(G)-invariant by construction.

As a consequence we deduce the following:
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Corollary 4.17

♥Any compact subgroup K of GL(n,R) is conjugate to a subgroup of O(n,R).

Proof Let π = i : K → GL(n,R) be the inclusion. Then K < O(Rn, 〈·, ·〉) and all orthogonal
representations are conjugate to each other, so that a conjugate of K is contained in O(n,R).

Corollary 4.18

♥O(n,R) is a maximal compact subgroup of GL(n,R) and it is unique up to conjugacy.

Lemma 4.13

♥

Let G be a compact Lie group. Then Bg is semidefinite negative. Moreover Bg(X,X) = 0

if and only if adg(X) = 0.

Proof Since G is a compact connected semisimple Lie group, then AdG(G) < O(g, 〈·, ·〉) and
adg(g) < o(g, 〈·, ·〉), that is elements of adg(g) are skew-symmetric with respect to theG-invariant
inner product 〈·, ·〉. In other words if X ∈ g and A := adg(X), then

Bg(X,X) = tr(A2) =
∑
i,j

AijAji = −
∑
i,j

|Aij |2 ≤ 0

andBg(X,X) = 0 if and only if adg(X) = 0. But since g is semisimple then ker(adg) = z(g) = 0,
so Bg(X,X) = 0 if and only if X = 0, and Bg is negative-definite.

Corollary 4.19

♥

Let G be a connected semisimple Lie group. The following are equivalent:
1. G is compact;
2. Bg is negative-definite;
3. Bg is definite.

Proof (1.⇒ 2.) This is Lemma 4.13.

(2.⇒ 3.) Obvious.

(3. ⇒ 1.) If Bg is definite, then O(g, Bg) is a compact group. Since AdG(G) < O(g, Bg), then
AdG(G) is compact and semisimple (since G is semisimple). To conclude we need the following
result, whose proof (of sketch thereof) we postpone to the end of the section.

Remark Notice that for the implication (3. ⇒ 1.) we do not need the explicit hypothesis of
semisimplicity of g, as it is automatically verified if Bg is negative-definite, hence non-degenerate
(Theorem 4.5).
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Theorem 4.8

♥

Let G be a compact semisimple Lie group. Then its universal cover G̃ is also compact.
Equivalently, π1(G) is finite.

Applying Theorem 4.8, we conclude that the universal covering of Ad(G)(G) is compact.
Since G is a covering of G(G), it has the same universal covering as AdG(G) and is hence
compact.

Proposition 4.13

♠

Let G be a compact Lie group with Lie algebra g. Then g = Z(g) ⊕ g′, with Bg′ non-
degenerate (so that g′ is semisimple). In fact, [g, g] = g′ and if Z(G) is finite, then G is
semisimple.

Proof Obviously, if we assume that if g = Z(g)⊕ g′ with g′ semisimple, then

[g, g] = [Z(g)⊕ g′, Z(g)⊕ g′] = [g′, g′] = g′.

Moreover if Z(G) is finite, then Z(g) = 0 and so g = g′ is semisimple.

To see that g = Z(g) ⊕ g′, let g′ = {X ∈ g : 〈X,Y 〉 = 0 for all Y ∈ Z(g)} = Z(g)⊥,
where 〈·, ·〉 is the G-invariant inner product on g so that AdG(G) < O(g, 〈·, ·〉). Since Z(g) is an
ideal in g, then the same proof as for Lemma 4.6 (where we use the invariance of 〈·, ·〉) shows that
Z(g)⊥ = g′ is also an ideal and g = Z(g)⊕ g′.

The only thing to show is that g′ is semisimple, or equivalently that Bg′ is non-degenerate.
Since g′ is an ideal in g, Bg′ = Bg|g′×g′ (Lemma 4.5). This is non-degenerate, because as in the
proof of Corollary 4.19 we have that Bg(X,X) = 0 if and only if adg(X) = 0, if and only if
X ∈ Z(g). So g′ is semisimple.

Corollary 4.20

♥

Let G be a compact connected Lie group. Then G = TK, where T and K are closed
connected normal subgroups, T < Z(G),K is compact and semisimple and T ∩K is finite.

Remark TK is an almost direct product, that is each element in G can be written as a product
of an element in T and an element in K but not uniquely (although only in finitely many ways).
However the product is still well-defined, since T is central, hence t1k1t2k2 = t1t2k1k2 for all
t1, t2 ∈ T and all k1, k2 ∈ K.

Proof By proposition 4.13, g = Z(g) ⊕ g′, where Bg′ is non-degenerate. Since bg|g′×g′ = Bg′
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and Bg is seminegative definite, this implies that Bg′ is negative definite and hence (Corollary ??)
the connected Lie subgroup K < G associated to g′ is compact. Let T = Z(G)◦, so that
Lie(T ) = Z(g). THe map

K × T −→ G

(k, t) 7−→ kt
(4.7)

is a Lie group homomorphism whose derivative at (e, e) is the map

g′ × Z(g) −→ g

(X,Y ) 7−→ X + Y ,
(4.8)

which is a Lie algebra homomorphism. In particularKT contains an open neighborhood of e ∈ G,
hence KT is an open subgroup of G. Since G is connected, this implies that KT = G. Finally,
K ∩ T < Z(K) and the latter is finite since K is compact semisimple.

Proof [Sketch of the Proof of Theorem 4.8] The fundamental group of a compact manifold is
finitely generated and the fundamental group of a topological group is Abelian. Thus by the
classification theorem for finitely generated Abelian groups, we have that

π1(G) '
ℓ⊕
i=1

Z⊕
q⊕
j=1

Z/njZ ,

and we want to show that ` = 0. If H1(M,Z) denotes the singular homology of a manifold M
with integer coefficients, we have

π1(M)/[π1(M), π1(M)] ' H1(M,Z) ,

but since G is a topological group and π1(G) is Abelian, then [π1(G), π1(G)] = {e} and hence

π1(G) ' H1(G,Z) .

By the Universal Coefficients Theorem

H1(G,R) ' Hom(H1(G,Z),R) = Hom(π1(G),R) = Hom

 ℓ⊕
i=1

Z⊕
q⊕
j=1

Z/njZ,R

 ' Rℓ ,

so that it will be enough to show that H1(G,R) = 0.

Recall that there is an isomorphism H∗(G,R) ' H∗
dR(G) of the group cohomology with the

de Rham cohomology of G. Recall moreover that:

1. If ω is a 1-form on a manifold M , dω is the 2-form defined by

dω(X,Y ) := X(ω(Y ))− Y (ω(X))− ω([X,Y ]) ,
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where X,Y ∈ Vect(M).
2. (Cartan) IfG is a compact connected Lie group, thenH∗

dR(G) is isomorphic to the homology
of complex Ω∗(G)G of G-invariant differential forms on G.

Thus to show that H∗(G,R) = 0 it will be enough to show that if ω is closed (that is dω = 0),
then ω = 0.

Let Xe, Ye ∈ TeG and let X,Y ∈ Vect(G)G the corresponding G-invariant vector fields. By
invariance of ω and of X,Y , we have that ω(X) and ω(Y ) are both constant, so that

0 = dω(X,Y )e = (X(ω(Y )))e − (Y (ω(X)))e − (ω([X,Y ]))e = 0− 0 + (ω([X,Y ]))e .

Since g is semisimple and hence g = [g, g], from dω = 0 follows that ω = 0.

K Chapter 4 Exercise k

1. Prove Lie Theorem for Lie algebras.
2. If g is nilpotent, then gC is nilpotent.
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Appendix Preliminaries

p.131 (paragraph before definition A.11) The explanation for the coordinate chart of the tangent
bundle is, if I am not mistaken, not correct. At least the definition that I know, is the one
where the isomorphism Rn → TpM isn’t any isomorphism, but the one induced by the
coordinate chart (φ,U) that is dφ.

A.1 Topological Preliminaries

We recall now a few well known concepts from topology.

Definition A.1. Basis of a topology

♣

A basis B of a topology T ⊂ P(X) on a set X is a family B ⊂ T such that every element
of T is the union of elements of B.

Example A.1 The family

B := {Br(x) : r ∈ Q≥0, x ∈ Qn}

is a basis of the Euclidean topology on Rn.

Lemma A.1. Characterization of a basis

♥

Let X be a set and T ⊂ P(X) a topology. A family B ⊂ T is a basis if and only if
X = ∪Y ∈BY , and
If B1, B2 ∈ B and B1 ∩ B2 6= ∅, then for every x ∈ B1 ∩ B2 there exists B3 ∈ B
with x ∈ B3 ⊂ B1 ∩B2.

Then the topology is the family consisting of all possible unions of elements in B.

Definition A.2. Subbasis

♣

A subbasis S of a topology T ⊂ P(X) on a set X is a family of sets such that the family B
obtained by taking all finite intersections of elements in S is a basis.
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Definition A.3. Hausdorff topology

♣A topological space X is Hausdorff if any two distinct points have disjoint neighborhood.

Definition A.4. Local Compactness

♣

A topological spaceX is locally compact if each point has a neighborhood basis consisting
of compact sets, that is if for every x ∈ X there exists a set Bx of compact neighborhoods
of x such that any neighborhood Ax of x contains an element Bx ∈ Bx.

Lemma A.2

♥

Let X be a locally compact Hausdorff topological space. Every closed subset and every
open subset of X is locally compact with respect to the induced topology.

For any topological spaces X,Y one can define different topologies on the set

Y X := {f : X → Y } ,

or more specifically on the set

C(X,Y ) : {f : X → Y : f is continuous} .

Definition A.5

♣

Let X,Y be topological spaces.
The sets

S(C,U) := {f ∈ C(X,Y ), f(C) ⊂ U}

where C ⊂ X is a compact set and U ⊂ Y is an open set, form a subbasis of the
compact-open topology on C(X,Y ).
The sets

S(x,U) := {f ∈ C(X,Y ) : f(x) ∈ U}

form a subbasis of the topology of the pointwise open (or pointwise convergence)
topology on C(X,Y )
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Remark Let X be a topological space and (Y, d) a metric space. The sets

BC(f, ε) := {g ∈ C(X,Y ) : sup
x∈C

d(f(x), g(x)) < ε} ,

where C ⊂ X is a compact set, ε > 0 and f ∈ C(X,Y ) form a basis of the compact-open
topology. The set BC(f, ε) consists of all functions g ∈ C(X,Y ) that are ε-close to f in all points
in the compact set C. It is easy to see that if {fn} ⊂ C(X,Y ), then fn → f in the compact-open
topology if and only if fn|C → f |C uniformly on all compact sets C ⊂ X . In other words, if Y is
a metric space the compact-open topology is nothing but the topology of the uniform convergence
on compact sets.

In general the pointwise convergence is weaker than the uniform convergence on compact sets,
which, in turn, is weaker that the uniform convergence. Of course the first two coincide on a set
with the discrete topology and the last two on a compact set.

A.2 Functional Analytical Preliminaries

Theorem A.1. Ascoli–Arzelà’s Theorem

♥

Let (X, dX) and (Y, dY ) be compact metric spaces and let us consider the Banach space
C(X,Y ) of continuous functions f : X → Y with the metric

d(f, g) := sup
x∈X

d(f(x), g(x)) .

Let F ⊂ C(X,Y ) be a subfamily of continuous functions. Then F is relatively compact if
and only if it is equicontinuous, that is for every ε > 0 there exists δ > 0 such that

dY (f(x), f(y)) < ε

for every f ∈ F , whenever dX(x, y) < δ.

This is the form of the theorem that we need. Notice however that

X need not be a metric space for the theorem to hold, and
If Y is not compact then the theorem still holds, provided we add the assumption that the set
{f(x) : f ∈ F} i s relatively compact for all x ∈ X .

If E,F are normed spaces, let us consider the normed space

B(E,F ) := {T : E → F : T is continuous and linear } ,
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with ‖T‖ := sup∥x∥E=1 ‖T (x)‖F .

If T ∈ B(E,F ) is bijective and the inverse is continuous, then T is an isomorphism ofE with
F . If in particular E = F , then T is an automorphism of E, and we denote Aut(E) ⊂ B(E) the
subspace of automorphisms. If in particular E is of finite dimension n, then Aut(E) = GL(E).

Definition A.6. Topologies on B(E,F )

♣

Let (Tn)n∈N ∈ B(E,F ).
1. We say that Tn → T in the norm topology if and only if limn→∞ ‖Tn − T‖ = 0,

where ‖ · ‖ is the norm on B(E,F ).
2. We say that Tn → T in the strong operator topology if and only if limn→∞ ‖Tnx −
Tx‖F = 0 for all x ∈ E.

3. We say that Tn → T in the weak operator topology if limn→∞ λ(Tnx) = λ(Tx) for
all λ ∈ F ∗.

In particular if E is a normed vector space over k = R or k = C and F = k, then B(E, k)
is nothing but the dual E∗ of E and the strong operator topology on B(E, k) is nothing but the
weak-∗-topology on E∗.

If H is a Hilbert space and E = F = H, then the space of isometric isomorphisms of E
Iso(E) is the space of unitary operators U(H). On U(H) the strong operator topology and the
weak operator topology coincide.

Let G be a topological group and E a topological vector space. A continuous representation
of G on E is a homomorphism π : G → Aut(E), which is continuous with respect to a topology
on Aut(E). If in particular, E is a normed space, then π is an isometric representation if
π : G→ Iso(E). An isometric representation of a Hilbert space is called unitary.

Lemma A.3

♥

LetG be a topological group acting continuously on a locally compact spaceX . LetCc(X)

be the space of continuous functions with compact support on X with the norm topology.
Then the representation π : G→ Iso(Cc(X)) defined by

π(g)f(x) := f(g−1x)

for x ∈ X and g ∈ G is a continuous representation if Iso(Cc(X)) is endowed with the
strong operator topology.
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If E,F are topological vector spaces and T ∈ B(E,F ), the adjoint T ∗ : F ∗ → E∗ is defined
by

T ∗(λ) := λ ◦ T .

In particular, if E is a topological vector space on which G acts via a representation π, and E∗ is
endowed with the weak-∗-topology, then

π∗(g) := π(g−1)∗ : E∗ → E∗

is continuous.

Definition A.7. regular Borel measure

♣

1. Let X be a locally compact Hausdorff space. A measure on the σ-algebra of Borel
sets of X is called a Borel measure if it is finite on every compact set.

2. A Borel measure µ is said to be regular if
(a). for every Borel set Y , µ(Y ) = supµ(K) over all compact subsets K ⊆ Y , and
(b). for every σ-bounded set Y , µ(Y ) = inf µ(U) over all open σ-bounded sets

U ⊇ Y for every set U in B(X) .

Recall that a set Y is σ-bounded if it is contained in the countable union of compact sets.

Definition A.8. Separability

♣

Let H be a complex Hilbert space. We say that H is separable if it contains a countable
dense subset.

A.3 Differentiable Manifolds

Definition A.9. Paracompactness

♣

A topological space X is paracompact if every open covering {Uα}α∈A has a locally finite
refinement, that is there exists a covering {Vβ}β∈B such that

For every β ∈ B there exists at least one α ∈ A such that Vβ ⊂ Uα, and
for every p ∈ X there exists a neighborhood W of x that intersects finitely many Vβ .

For us a smooth manifold will always be Hausdorff, locally Euclidean with countable basis
and paracompact.
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Definition A.10. Germs

♣

Given p ∈ M , we denote by C∞(p) the algebra of germs of smooth functions at p. This is
the algebra of smooth functions defined in an open neighborhood of p, where two functions
are identified if they coincide on a neighborhood of p.

Recall that the tangent space TpM to the manifold M at the point p is the set of all linear
functionals Xp : C

∞(p)→ R such that for all α, β ∈ R and all f, g ∈ C∞(p):

1. Xp(αf + βg) = αXp(f) + βXp(g) (linearity);
2. Xp(fg) = Xp(f) · g(p) + f(p)Xp(g) (Leibniz rule).

The linear mapXp ∈ TpM is called a tangent vector toM at p and the tangent space TpM has the
structure of real vector space with operations:

1. (Xp + Yp)(f) := Xp(f) + Yp(f);
2. (αXp)(f) := αXp(f).

Let f : M → N be a smooth map of smooth manifolds and let p ∈ M . The differential of f
at p is the linear map dpf : TpM → Tf(p)N defined as follows: ifXp ∈ TpM and φ ∈ C∞(f(p)),
then

dpf(Xp) := Xp(φ ◦ f) .

In other words, the tangent vector dpf(Xp) applied to the function φ takes the derivative of the
function φ ◦ f at the point p ∈M in the direction of the tangent vector Xp.

The tangent bundle toM is TM =
⋃
p∈M

TpM . It can be made into a manifold with coordinate

charts (U × Rn, ϕ × ψ), where (U,ϕ) is a coordinate chart on M and ψ : Rn → TpM is an
isomorphism. With this smooth structure the projection π : TM →M is smooth.

Definition A.11. Smooth vector field
A smooth vector field is smooth section of the tangent bundle

X : M → TM

π ◦X = idM . In other words, it is a map

X : M → TM

p 7→ Xp ∈ TpM
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♣

that assigns to each point p ∈M a tangent vector Xp to M at p, and such that the map

Xf : M → R

p 7→ Xp(f)

is smooth, for every f ∈ C∞(M).

It can be proven that if p ∈M , then

Xp(f) = dpf(Xp) , (A.1)

that is Xp(f) is the differential of the function f at the point p in the direction of Xp.

Definition A.12

♣

Let ϕ :M → N be a smooth map of smooth manifolds. Then:
1. ϕ is an immersion if dpϕ is non-singular for all p ∈M .
2. ϕ(M) is a submanifold or an immersed sumbanifold of N if ϕ is a one-to-one

immersion.
3. If ϕ is a one-to-one immersion that is also a a homeomorphism of M onto its image,

then ϕ is an embedding and ϕ(M) is an embedded submanifold.

In the following pictures in green we see two immersion and in red two immersed submanifolds.

An embedded submanifold has the smooth structure coming from the ambient manifold and
the concept of embedded submanifold are essentially equivalent to that of regular submanifold that
we recall now.
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Definition A.13. (Regular Submanifold)

♣

Let M be a smooth m-dimensional manifold.
1. A subset N ⊂ M has the submanifold property if every p ∈ N has a coordinate

neighborhood (U,ϕ) in M with local coordinates x1, . . . , xm such that
(a). ϕ(p) = 0;
(b). ϕ(U) is an open cube (−ε, ε)m of side length 2ε;
(c). ϕ(U ∩N) = {x ∈ (−ε, ε)m : xn+1 = · · ·xm = 0}.

2. A regular submanifold of M is any subset N ⊂ M with the submanifold property
and the smooth structure determined by the coordinate neighborhoods defined by the
submanifold property.

Example A.2 The following is not a regular submanifold of R2.

The point of a regular submanifold is that the topology and the differentiable structure are
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those derived from M .
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