Functional Analysis II

Exercise Sheet 1

- 1. Let A be a unital algebra and $x \in A$. Suppose there are $y, z \in A$ with xy = zx = e. Prove y = z. Moreover, prove that if there is $y' \in A$ with xy' = e then y' = y.
- 2. Let X be a locally compact Hausdorff space, which is not compact. Denote by αX the onepoint compactification of X. Show that the unital algebra $C_0(X)_I$ is canonically isomorphic to $C(\alpha X)$.
- 3. Construct a function $f \in L^1(\mathbb{R})$ such that $||f * f^*||_1 < ||f||_1^2$. *Hint:* Any such function has to change the sign at some point.
- 4. Let A be a unital \mathbb{C} -algebra with a norm $\|\cdot\|$ such that:
 - (a) The pair $(A, \|\cdot\|)$ is a Banach space.
 - (b) The multiplication map $A \times A \to A$ is continuous in each variable.

Show that there is an equivalent norm $\|\cdot\|_{\text{new}}$ on A such that

 $||xy||_{\text{new}} \leq ||x||_{\text{new}} ||y||_{\text{new}}.$

Hint: For each $x \in A$ define the map $R_x(z) := xz$ and put $||x||_{\text{new}} := ||R_x||$.