Exercise Sheet 1 - Solutions

1. Let A be a unital algebra and $x \in A$. Suppose there are $y, z \in A$ with $x y=z x=e$. Prove $y=z$. Moreover, prove that if there is $y^{\prime} \in A$ with $x y^{\prime}=e$ then $y^{\prime}=y$.
Solution: The associativity of the multiplication in A implies

$$
y=e y=(z x) y=z(x y)=z e=z
$$

Suppose there is another element with $x y^{\prime}=y^{\prime} x=e$. Then

$$
y=y e=y\left(x y^{\prime}\right)=(y x) y^{\prime}=e y^{\prime}=y^{\prime} .
$$

2. Let X be a locally compact Hausdorff space, which is not compact. Denote by αX the onepoint compactification of X. Show that the unital algebra $C_{0}(X)_{I}$ is canonically isomorphic to $C(\alpha X)$.
Solution: We construct an algebra morphism

$$
\Phi: C_{0}(X)_{I} \rightarrow C(\alpha X)
$$

with the mapping

$$
\Phi(f, \lambda)(x):= \begin{cases}f(x)+\lambda & \text { if } x \in X \\ \lambda & \text { if } x=\infty\end{cases}
$$

Let $(f, \lambda) \in C_{0}(X)_{I}$. The function $\Phi(f, \lambda)$ is continuous on $X \subset \alpha X$ because $\left.\Phi(f, \lambda)\right|_{X}=f$ and the subspace topology on the open subset $X \subset \alpha X$ coincides with the topology on X. So we only have to prove that $\Phi(f, \lambda)$ is continuous at ∞. Let $\epsilon>0$ then there exists a compact $K \subset X$ such that $K \neq X$ (because X is not compact) and $|f(x)|<\epsilon$ for all $x \notin K$. This implies $|\Phi(f, \lambda)(x)-\lambda|<\epsilon$ for all $x \in \alpha X-K$. Since $\alpha X-K$ is an open non-empty neighborhood of ∞ and ϵ was arbitrary this implies that $\Phi(f, \lambda)$ is continuous. Therefore the map Φ is well-defined.

We construct a converse

$$
\Psi: C(\alpha X) \rightarrow C_{0}(X)_{I}
$$

by putting

$$
\Psi(f)=\left(\left.f\right|_{X}-f(\infty), f(\infty)\right)
$$

This map is well-defined because the subspace topology on $X \subset \alpha X$ coincides with the topology on X. We leave it to the reader to check that Φ and Ψ are unital algebra morphisms. Let $(f, \lambda) \in C_{0}(X)_{I}$ then

$$
\Psi(\Phi(f, \lambda))(x)=((f+\lambda)-\lambda, \lambda)=(f, \lambda)
$$

Let $f \in C(\alpha X)$ then

$$
\Phi(\Psi(f))(x)=\Phi\left(\left.f\right|_{X}-f(\infty), f(\infty)\right)(x)= \begin{cases}f(x) & \text { if } x \in X \\ f(\infty) & \text { if } x=\infty\end{cases}
$$

Thus Ψ and Φ are inverse to one another.
3. Construct a function $f \in L^{1}(\mathbb{R})$ such that $\left\|f * f^{*}\right\|_{1}<\|f\|_{1}^{2}$.

Hint: Any such function has to change the sign at some point.
Solution: Consider the function $f:=-1_{[-1,0]}+1_{[0,1]}$. Then $\|f\|_{1}=2$ and

$$
-\left(f * f^{*}\right)(x)= \begin{cases}0 & \text { if } x \notin[-2,2] \\ x+2 & \text { if }-2 \leqslant x \leqslant-1 \\ -2 x-1 & \text { if }-1 \leqslant x \leqslant 0 \\ 2 x-1 & \text { if } 0 \leqslant x \leqslant 1 \\ -x+2 & \text { if } 1 \leqslant x \leqslant 2\end{cases}
$$

To understand this example, it makes sense to compute the convolution of two indicator functions of compact, connected intervals and to draw the graph of the convolution. The above formula implies

$$
\left\|f * f^{*}\right\|_{1}=2<4=\|f\|_{1}^{2}
$$

4. Let A be a unital \mathbb{C}-algebra with a norm $\|\cdot\|$ such that:
(a) The pair $(A,\|\cdot\|)$ is a Banach space.
(b) The multiplication map $A \times A \rightarrow A$ is continuous in each variable.

Show that there is an equivalent norm $\|\cdot\|_{\text {new }}$ on A such that

$$
\|x y\|_{\text {new }} \leqslant\|x\|_{\text {new }}\|y\|_{\text {new }}
$$

Hint: For each $x \in A$ define the map $R_{x}(z):=x z$ and put $\|x\|_{\text {new }}:=\left\|R_{x}\right\|$.
Solution: The definition of $\|\cdot\|_{\text {new }}$ is well-defined because the multiplication map is continuous in the second variable. For all $x, y \in A$ we get $R_{x y}=R_{x} R_{y}$ because associativity implies

$$
R_{x y}(z)=(x y) z=x(y z)=R_{x}(y z)=R_{x}\left(R_{y}(z)\right)=\left(R_{x} R_{y}\right)(z)
$$

for all $z \in A$. This implies

$$
\|x y\|_{\text {new }}=\left\|R_{x y}\right\|=\left\|R_{x} R_{y}\right\| \leqslant\left\|R_{x}\right\|\left\|R_{y}\right\|=\|x\|_{\text {new }}\|y\|_{\text {new }}
$$

Suppose $\|x\|_{\text {new }}=0$ then we get $0=R_{x}(1)=x$ and hence $x=0$. The distributive law implies

$$
R_{x+y}(z)=(x+y) z
$$

for all $z \in A$ so we get

$$
\|x+y\|_{\text {new }}=\left\|R_{x+y}\right\|=\left\|R_{x}+R_{y}\right\| \leqslant\left\|R_{x}\right\|+\left\|R_{y}\right\|=\|x\|_{\text {new }}+\|y\|_{\text {new }}
$$

Note that for each $\lambda \in \mathbb{C}$ and $x \in X$ we have

$$
R_{\lambda x}(z)=(\lambda x) z=\lambda(x z)=\lambda R_{x}(z)
$$

We get

$$
\|\lambda x\|_{\text {new }}=\left\|R_{\lambda x}\right\|=\left\|\lambda R_{x}\right\|=|\lambda|\left\|R_{x}\right\|
$$

Thus $\|\cdot\|_{\text {new }}$ is a submultiplicative norm on A.
Each $x \in A$ satisfies

$$
\|x\|_{\text {new }}=\sup _{\|y\| \leqslant 1}\|x y\| \geqslant\|x\|
$$

So the open mapping theorem implies that the norms $\|\cdot\|$ and $\|\cdot\|_{\text {new }}$ are equivalent.

