D-MATH Prof. Marc Burger Functional Analysis II

Exercise Sheet 1 - Solutions

1. Let A be a unital algebra and $x \in A$. Suppose there are $y, z \in A$ with xy = zx = e. Prove y = z. Moreover, prove that if there is $y' \in A$ with xy' = e then y' = y.

Solution: The associativity of the multiplication in A implies

$$y = ey = (zx)y = z(xy) = ze = z.$$

Suppose there is another element with xy' = y'x = e. Then

$$y = ye = y(xy') = (yx)y' = ey' = y'.$$

2. Let X be a locally compact Hausdorff space, which is not compact. Denote by αX the onepoint compactification of X. Show that the unital algebra $C_0(X)_I$ is canonically isomorphic to $C(\alpha X)$.

Solution: We construct an algebra morphism

$$\Phi\colon C_0(X)_I\to C(\alpha X).$$

with the mapping

$$\Phi(f,\lambda)(x) := \begin{cases} f(x) + \lambda & \text{if } x \in X \\ \lambda & \text{if } x = \infty. \end{cases}$$

Let $(f, \lambda) \in C_0(X)_I$. The function $\Phi(f, \lambda)$ is continuous on $X \subset \alpha X$ because $\Phi(f, \lambda)|_X = f$ and the subspace topology on the open subset $X \subset \alpha X$ coincides with the topology on X. So we only have to prove that $\Phi(f, \lambda)$ is continuous at ∞ . Let $\epsilon > 0$ then there exists a compact $K \subset X$ such that $K \neq X$ (because X is not compact) and $|f(x)| < \epsilon$ for all $x \notin K$. This implies $|\Phi(f, \lambda)(x) - \lambda| < \epsilon$ for all $x \in \alpha X - K$. Since $\alpha X - K$ is an open non-empty neighborhood of ∞ and ϵ was arbitrary this implies that $\Phi(f, \lambda)$ is continuous. Therefore the map Φ is well-defined.

We construct a converse

$$\Psi \colon C(\alpha X) \to C_0(X)_I$$

by putting

$$\Psi(f) = (f|_X - f(\infty), f(\infty))$$

This map is well-defined because the subspace topology on $X \subset \alpha X$ coincides with the topology on X. We leave it to the reader to check that Φ and Ψ are unital algebra morphisms. Let $(f, \lambda) \in C_0(X)_I$ then

$$\Psi(\Phi(f,\lambda))(x) = ((f+\lambda) - \lambda, \lambda) = (f,\lambda).$$

Let $f \in C(\alpha X)$ then

$$\Phi(\Psi(f))(x) = \Phi(f|_X - f(\infty), f(\infty))(x) = \begin{cases} f(x) & \text{if } x \in X\\ f(\infty) & \text{if } x = \infty. \end{cases}$$

Thus Ψ and Φ are inverse to one another.

FS 2024

D-MATH Prof. Marc Burger

Functional Analysis II

3. Construct a function $f \in L^1(\mathbb{R})$ such that $||f * f^*||_1 < ||f||_1^2$.

Hint: Any such function has to change the sign at some point.

Solution: Consider the function $f := -1_{[-1,0]} + 1_{[0,1]}$. Then $||f||_1 = 2$ and

$$-(f*f^*)(x) = \begin{cases} 0 & \text{if } x \notin [-2,2] \\ x+2 & \text{if } -2 \leqslant x \leqslant -1 \\ -2x-1 & \text{if } -1 \leqslant x \leqslant 0 \\ 2x-1 & \text{if } 0 \leqslant x \leqslant 1 \\ -x+2 & \text{if } 1 \leqslant x \leqslant 2. \end{cases}$$

To understand this example, it makes sense to compute the convolution of two indicator functions of compact, connected intervals and to draw the graph of the convolution. The above formula implies

$$||f * f^*||_1 = 2 < 4 = ||f||_1^2.$$

- 4. Let A be a unital \mathbb{C} -algebra with a norm $\|\cdot\|$ such that:
 - (a) The pair $(A, \|\cdot\|)$ is a Banach space.
 - (b) The multiplication map $A \times A \to A$ is continuous in each variable.

Show that there is an equivalent norm $\|\cdot\|_{\text{new}}$ on A such that

$$\|xy\|_{\text{new}} \leqslant \|x\|_{\text{new}} \|y\|_{\text{new}}$$

Hint: For each $x \in A$ define the map $R_x(z) := xz$ and put $||x||_{\text{new}} := ||R_x||$.

Solution: The definition of $\|\cdot\|_{\text{new}}$ is well-defined because the multiplication map is continuous in the second variable. For all $x, y \in A$ we get $R_{xy} = R_x R_y$ because associativity implies

$$R_{xy}(z) = (xy)z = x(yz) = R_x(yz) = R_x(R_y(z)) = (R_xR_y)(z)$$

for all $z \in A$. This implies

$$||xy||_{\text{new}} = ||R_{xy}|| = ||R_xR_y|| \le ||R_x|| ||R_y|| = ||x||_{\text{new}} ||y||_{\text{new}}$$

Suppose $||x||_{\text{new}} = 0$ then we get $0 = R_x(1) = x$ and hence x = 0. The distributive law implies

$$R_{x+y}(z) = (x+y)z$$

for all $z \in A$ so we get

$$||x+y||_{\text{new}} = ||R_{x+y}|| = ||R_x + R_y|| \le ||R_x|| + ||R_y|| = ||x||_{\text{new}} + ||y||_{\text{new}}.$$

Note that for each $\lambda \in \mathbb{C}$ and $x \in X$ we have

$$R_{\lambda x}(z) = (\lambda x)z = \lambda(xz) = \lambda R_x(z).$$

FS 2024

D-MATH Prof. Marc Burger

We get

Functional Analysis II

$$|\lambda x||_{\text{new}} = ||R_{\lambda x}|| = ||\lambda R_x|| = |\lambda|||R_x||.$$

Thus $\|\cdot\|_{\text{new}}$ is a submultiplicative norm on A.

Each $x \in A$ satisfies

$$\|x\|_{\operatorname{new}} = \sup_{\|y\| \leqslant 1} \|xy\| \geqslant \|x\|$$

So the open mapping theorem implies that the norms $\|\cdot\|$ and $\|\cdot\|_{new}$ are equivalent.