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Exercise Sheet 2 - Solutions

1. Let X be a locally compact Hausdorff space. Compute the spectrum SpC0(X)(f) for each
f ∈ C0(X).

Solution: Suppose X is compact and let f ∈ C(X)(= C0(X)). We claim that f is invertible if
and only if f(x) ̸= 0 for all x ∈ X. Suppose f is invertible. Then there exists g ∈ C(X) with
fg = e. The unit in C(X) is the constant function with value 1, so this implies f(x)g(x) = 1
for all x ∈ X. This equality implies f(x) ̸= 0 for all x ∈ X.

Suppose f(x) ̸= 0 for all x ∈ X. Then f defines a continuous map

f : X → C∗

where we consider C∗ ⊂ C with the subspace topology. The inversion map

inv: C∗ → C∗, z 7→ z−1

is holomorphic, so it is continuous. Define the continuous function g := inv ◦ f. Then

f(x)g(x) = f(x)inv(f(x)) = 1.

Thus fg = e, so f is invertible.

We can apply the claim to obtain

SpC(X)(f) = {λ ∈ C | f − λe not invertible} = {λ ∈ C | ∃x ∈ X : f(x)− λ = 0} = im(f).

Suppose X is not compact. The algebra C0(X) is not unital, so for each f ∈ C0(X) we have
defined

SpC0(X)(f) := Sp(C0(X))I (f).

We use the isomorphism ϕ : (C0(X))I ∼= C(αX) where αX denotes the one-point compacti-
fication of X to write

Sp(C0(X))I (f) = SpC(αX)(ϕ(f)) = im(ϕ(f)).

I claim
im(ϕ(f)) = im(f)

for all f ∈ C0(X). Indeed, note that im(ϕ(f)) is compact because αX is compact. This
implies that im(ϕ(f)) is closed in R and hence im(f) ⊂ im(ϕ(f)). For the other direction,
let (xn)n ∈ X be a sequence converging to ∞ in αX. Then

ϕ(f)(∞) = lim
n→∞

ϕ(f)(xn) = lim
n→∞

f(xn).

This gives ϕ(f)(∞) ∈ im(f). Thus we get

im(ϕ(f)) = im(f) ∪ {ϕ(f)(∞)} ⊂ im(f).

We arrive at
SpC0(X)(f) = im(f)

for all f ∈ C0(X).
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2. Let Γ be an abelian group and A = ℓ1(Γ) with convolution product. Compute the Guelfand

spectrum Â of A as a set.

Solution: Let Γ∧ be the set of group morphism Γ → T, where T := {z ∈ C∗ : |z| = 1}. We
construct a bijection

Φ : Â → Γ∧, φ 7→ (γ 7→ φ(δγ))

Ψ : Γ∧ → Â, χ 7→
(
f 7→

∑
γ∈Γ

f(γ)χ(γ)

)
.

Let φ ∈ Â. For all γ, µ ∈ Γ, we have

Φ(φ)(γµ) = φ(δγµ) = φ(δγ)φ(δµ) = Φ(φ)(γ)Φ(φ)(µ).

So the function Φ(φ) is multiplicative.

Suppose φ(δ1) = 0. Then φ(δa) = φ(δa ∗ δ1) = φ(δa)φ(δ1) = 0. This implies that φ vanishes
at all functions with finite support. These are dense in A, so this implies φ = 0 by continuity
of φ. This is a contradiction to φ lying in the Guelfand spectrum, so we must have φ(δ1) ̸= 0.
The multiplicativity property implies

Φ(φ)(1) = Φ(φ)(1 · 1) = Φ(φ)(1)2.

Thus Φ(φ)(1) = 1. In particular,

1 = Φ(φ)(1) = Φ(φ)(γγ−1) = Φ(φ)(γ)Φ(φ)(γ−1)

for each γ ∈ Γ. Thus we get Φ(φ)(γ) ̸= 0 and Φ(φ)(γ−1) = Φ(φ)(γ)−1 for each γ ∈ Γ.

Suppose there is γ ∈ Γ with |Φ(φ)(γ)| ≠ 1. We either have |Φ(φ)(γ)| > 1 or |Φ(φ)(γ−1)| > 1,
so we can assume |Φ(φ)(γ)| > 1 without loss of generality. Pick a real number c ∈ R with

|Φ(φ)(γ)| > c > 1.

The functions
fn := c−nδn

converge to 0 in ℓ1(Γ) as n → ∞ because 0 < c−1 < 1. Thus

0 = lim
n→∞

φ(fn) = lim
n→∞

c−nΦ(φ)(γ)n.

This is a contradiction because |c−nΦ(φ)(γ)n| > 1. Thus we get |Φ(φ)(γ)| = 1 for all γ ∈ Γ.
This implies that Φ is well-defined.

Let χ ∈ Γ∧. Note that Ψ(χ) is a continuous functional (because |Ψ(χ)(f)| ⩽ ∥f∥). Consider
γ, µ ∈ Γ then we have

Ψ(χ)(δγ ∗ δµ) = Ψ(χ)(δγµ) = χ(γµ) = χ(γ)χ(µ) = Φ(χ)(γ)Φ(χ)(µ).
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This implies
Ψ(χ)(f ∗ g) = Ψ(χ)(f)Ψ(χ)(g)

for all f, g ∈ ℓ1(Γ) with finite support by linearity of Ψ. The functions with finite support
are dense in ℓ1(Γ), so the continuity of Φ and the continuity of convolution imply that Ψ(χ)
is an algebra morphism. Therefore the map Ψ is well-defined.

We have
Φ(Ψ(χ))(γ) = Ψ(χ)(δγ) = χ(γ)

for each χ ∈ Γ∧ and γ ∈ Γ. For each φ ∈ ℓ1(Γ), we have

Ψ(Φ(φ))(δγ) = Φ(φ)(γ) = φ(δγ).

By linearity and continuity, this implies Ψ(Φ(φ)) = φ. Thus Φ and Ψ are inverse to one
another.

3. Let A = L1([0, 1]) be the Volterra algebra (see Example 1.6 (iv) in the notes) and f0 ≡ 1.
Identify the subalgebra of A generated by f0.

Solution: Let g ∈ L1([0, 1]) be a function. Put

F (x) := f0 ∗ g(x) =
∫ x

0

g(t)dt.

The Lebesgue differentiation theorem implies F ′(x) = f(x) for almost all x ∈ [0, 1]. Moreover,
we have F (0) = 0. This determines the function f uniquely.

We define recursively
fn+1 := f0 ∗ fn

for each n ⩾ 0. We claim fn(x) = xn/n! for each n ⩾ 0. We prove it by induction on n. The
case n = 0 follows from the definition of f0. If the induction hypothesis is satisfied for some
n ∈ N, note that

d

dx
(xn+1/(n+ 1)!) = xn/n!.

So the uniqueness of the antiderivative implies the claimed equality.

Because A is commutative the subalgebra generated by f0 must be the algebra of polynomial
functions C[X].
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