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Exercise Sheet 2 - Solutions

1. Let X be a locally compact Hausdorff space. Compute the spectrum Spg, ( X)( f) for each
f e Cy (X)
Solution: Suppose X is compact and let f € C(X)(= Co(X)). We claim that f is invertible if
and only if f(x) # 0 for all z € X. Suppose f is invertible. Then there exists g € C(X) with
fg = e. The unit in C'(X) is the constant function with value 1, so this implies f(x)g(x) =1
for all z € X. This equality implies f(z) # 0 for all z € X.

Suppose f(z) # 0 for all x € X. Then f defines a continuous map
f: X—=>C

where we consider C* C C with the subspace topology. The inversion map

inv: C* - C*, z— 271

is holomorphic, so it is continuous. Define the continuous function g := inv o f. Then

f(x)g(x) = f(z)inv(f(z)) = 1.
Thus fg = e, so f is invertible.
We can apply the claim to obtain
Spex)(f) ={A € C | f — Ae not invertible} = {A € C | Jz € X : f(z) — A =0} = im(f).

Suppose X is not compact. The algebra Cy(X) is not unital, so for each f € Cy(X) we have
defined

SPey(x) () 7= SP(cy(x)), (f)-
We use the isomorphism ¢ : (Co(X)); = C(aX) where aX denotes the one-point compacti-
fication of X to write

SP(CO(X))1<f) = SPC(aX)(¢(f)) = im(¢(f))-
I claim -
im(¢(f)) = im(f)
for all f € Cy(X). Indeed, note that im(¢(f)) is compact because aX is compact. This

implies that im(¢(f)) is closed in R and hence im(f) C im(4(f)). For the other direction,
let (z,)n € X be a sequence converging to co in «X. Then

B()(o0) = lim 6(/)(an) = lim_ f(a,).
This gives ¢(f)(o0) € im(f). Thus we get
m($(f)) = im(f) U {6(/)(c0)} < 7).

We arrive at

SpCO(X)<f) = im(f)
for all f € Cy(X).
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2. Let I' be an abelian group and A = ¢}(T") with convolution product. Compute the Guelfand
spectrum A of A as a set.

Solution: Let I'”* be the set of group morphism I' — T, where T := {z € C* : |z| = 1}. We
construct a bijection

AT, o (v 0(8y))
Uil — A e (fH Zf(v)x(’v))

~el’
Let ¢ € A. For all v, € ') we have

() (v1) = p(0yu) = ©(07)0(6,) = () (V) 2() (1)

So the function ®(y) is multiplicative.
Suppose ¢(d1) = 0. Then ¢(d,) = p(dq *01) = ©(da)p(d1) = 0. This implies that ¢ vanishes
at all functions with finite support. These are dense in A, so this implies ¢ = 0 by continuity
of p. This is a contradiction to ¢ lying in the Guelfand spectrum, so we must have ¢(d1) # 0.
The multiplicativity property implies

0(p)(1) = @(p)(1-1) = @(p)(1)*.

Thus ®(¢)(1) = 1. In particular,

1=2(p)(1) = () (v ") = () (NB()(v )

for each v € T'. Thus we get ®(p)(y) # 0 and ®(¢)(y~ 1) = ®(p)(y) ! for each v € T.
(

Suppose there is v € T with |®(p)(y)| # 1. We either have [®(p)(y)| > 1 or [®(p)(v71)] > 1,
so we can assume |®(¢)(y)| > 1 without loss of generality. Pick a real number ¢ € R with

|2(p) (V)| > c> 1.
The functions
fni=c"6,

converge to 0 in #1(T") as n — oo because 0 < ¢~! < 1. Thus

0= lim ¢(fn) = lim ™" ®(p)(y)".

n—oo n—oo

This is a contradiction because |¢™"®(¢)(y)™| > 1. Thus we get |®(¢)(y)| =1 for all v € T.
This implies that ® is well-defined.

Let x € T'". Note that ¥(x) is a continuous functional (because |¥(x)(f)] < ||f]]). Consider
v, i € I' then we have

W(x)(0y % 0u) = ¥(x)(0yu) = x(v1) = x(M)x () = () (V)P (x) (1)-
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This implies
YO (f*g) =Y)()YO)(9)

for all f,g € ¢1(I') with finite support by linearity of ¥. The functions with finite support
are dense in £}(T), so the continuity of ® and the continuity of convolution imply that ¥(y)
is an algebra morphism. Therefore the map ¥ is well-defined.
We have

(VX)) () = T)(6y) = x(7)

for each x € ' and ~ € T'. For each ¢ € ¢1(T'), we have

U (2())(0y) = 2(p)(7) = ¢(55)-

By linearity and continuity, this implies U(®(¢)) = ¢. Thus ® and ¥ are inverse to one
another.

3. Let A = L'([0,1]) be the Volterra algebra (see Example 1.6 (iv) in the notes) and fo = 1.
Identify the subalgebra of A generated by fo.

Solution: Let g € L'([0,1]) be a function. Put

Fa) = fog(o) = [ g(on.

The Lebesgue differentiation theorem implies F'(z) = f(z) for almost all z € [0, 1]. Moreover,
we have F'(0) = 0. This determines the function f uniquely.

We define recursively
fnJrl = fO * fn

for each n > 0. We claim f,(x) = 2™ /n! for each n > 0. We prove it by induction on n. The
case n = 0 follows from the definition of fj. If the induction hypothesis is satisfied for some

n € N, note that

%(x”“/(nJr ) =z"/nl.

So the uniqueness of the antiderivative implies the claimed equality.

Because A is commutative the subalgebra generated by fy must be the algebra of polynomial
functions C[X].



