Exercise Sheet 2 - Solutions

1. Let X be a locally compact Hausdorff space. Compute the spectrum $\operatorname{Sp}_{C_{0}(X)}(f)$ for each $f \in C_{0}(X)$.
Solution: Suppose X is compact and let $f \in C(X)\left(=C_{0}(X)\right)$. We claim that f is invertible if and only if $f(x) \neq 0$ for all $x \in X$. Suppose f is invertible. Then there exists $g \in C(X)$ with $f g=e$. The unit in $C(X)$ is the constant function with value 1 , so this implies $f(x) g(x)=1$ for all $x \in X$. This equality implies $f(x) \neq 0$ for all $x \in X$.
Suppose $f(x) \neq 0$ for all $x \in X$. Then f defines a continuous map

$$
f: X \rightarrow \mathbb{C}^{*}
$$

where we consider $\mathbb{C}^{*} \subset \mathbb{C}$ with the subspace topology. The inversion map

$$
\text { inv: } \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}, z \mapsto z^{-1}
$$

is holomorphic, so it is continuous. Define the continuous function $g:=\operatorname{inv} \circ f$. Then

$$
f(x) g(x)=f(x) \operatorname{inv}(f(x))=1
$$

Thus $f g=e$, so f is invertible.
We can apply the claim to obtain

$$
\operatorname{Sp}_{C(X)}(f)=\{\lambda \in \mathbb{C} \mid f-\lambda e \text { not invertible }\}=\{\lambda \in \mathbb{C} \mid \exists x \in X: f(x)-\lambda=0\}=\operatorname{im}(f)
$$

Suppose X is not compact. The algebra $C_{0}(X)$ is not unital, so for each $f \in C_{0}(X)$ we have defined

$$
\operatorname{Sp}_{C_{0}(X)}(f):=\operatorname{Sp}_{\left(C_{0}(X)\right)_{I}}(f)
$$

We use the isomorphism $\phi:\left(C_{0}(X)\right)_{I} \cong C(\alpha X)$ where αX denotes the one-point compactification of X to write

$$
\operatorname{Sp}_{\left(C_{0}(X)\right)_{I}}(f)=\operatorname{Sp}_{C(\alpha X)}(\phi(f))=\operatorname{im}(\phi(f))
$$

I claim

$$
\operatorname{im}(\phi(f))=\overline{\operatorname{im}(f)}
$$

for all $f \in C_{0}(X)$. Indeed, note that $\operatorname{im}(\phi(f))$ is compact because αX is compact. This implies that $\operatorname{im}(\phi(f))$ is closed in \mathbb{R} and hence $\overline{\operatorname{im}(f)} \subset \operatorname{im}(\phi(f))$. For the other direction, let $\left(x_{n}\right)_{n} \in X$ be a sequence converging to ∞ in αX. Then

$$
\phi(f)(\infty)=\lim _{n \rightarrow \infty} \phi(f)\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

This gives $\phi(f)(\infty) \in \overline{\operatorname{im}(f)}$. Thus we get

$$
\operatorname{im}(\phi(f))=\operatorname{im}(f) \cup\{\phi(f)(\infty)\} \subset \overline{\operatorname{im}(f)}
$$

We arrive at

$$
\operatorname{Sp}_{C_{0}(X)}(f)=\overline{\operatorname{im}(f)}
$$

for all $f \in C_{0}(X)$.
2. Let Γ be an abelian group and $A=\ell^{1}(\Gamma)$ with convolution product. Compute the Guelfand spectrum \widehat{A} of A as a set.
Solution: Let Γ^{\wedge} be the set of group morphism $\Gamma \rightarrow \mathbb{T}$, where $\mathbb{T}:=\left\{z \in \mathbb{C}^{*}:|z|=1\right\}$. We construct a bijection

$$
\begin{aligned}
& \Phi: \widehat{A} \rightarrow \Gamma^{\wedge}, \varphi \mapsto\left(\gamma \mapsto \varphi\left(\delta_{\gamma}\right)\right) \\
& \Psi: \Gamma^{\wedge} \rightarrow \widehat{A}, \chi \mapsto\left(f \mapsto \sum_{\gamma \in \Gamma} f(\gamma) \chi(\gamma)\right) .
\end{aligned}
$$

Let $\varphi \in \widehat{A}$. For all $\gamma, \mu \in \Gamma$, we have

$$
\Phi(\varphi)(\gamma \mu)=\varphi\left(\delta_{\gamma \mu}\right)=\varphi\left(\delta_{\gamma}\right) \varphi\left(\delta_{\mu}\right)=\Phi(\varphi)(\gamma) \Phi(\varphi)(\mu)
$$

So the function $\Phi(\varphi)$ is multiplicative.
Suppose $\varphi\left(\delta_{1}\right)=0$. Then $\varphi\left(\delta_{a}\right)=\varphi\left(\delta_{a} * \delta_{1}\right)=\varphi\left(\delta_{a}\right) \varphi\left(\delta_{1}\right)=0$. This implies that φ vanishes at all functions with finite support. These are dense in A, so this implies $\varphi=0$ by continuity of φ. This is a contradiction to φ lying in the Guelfand spectrum, so we must have $\varphi\left(\delta_{1}\right) \neq 0$. The multiplicativity property implies

$$
\Phi(\varphi)(1)=\Phi(\varphi)(1 \cdot 1)=\Phi(\varphi)(1)^{2}
$$

Thus $\Phi(\varphi)(1)=1$. In particular,

$$
1=\Phi(\varphi)(1)=\Phi(\varphi)\left(\gamma \gamma^{-1}\right)=\Phi(\varphi)(\gamma) \Phi(\varphi)\left(\gamma^{-1}\right)
$$

for each $\gamma \in \Gamma$. Thus we get $\Phi(\varphi)(\gamma) \neq 0$ and $\Phi(\varphi)\left(\gamma^{-1}\right)=\Phi(\varphi)(\gamma)^{-1}$ for each $\gamma \in \Gamma$.
Suppose there is $\gamma \in \Gamma$ with $|\Phi(\varphi)(\gamma)| \neq 1$. We either have $|\Phi(\varphi)(\gamma)|>1$ or $\left|\Phi(\varphi)\left(\gamma^{-1}\right)\right|>1$, so we can assume $|\Phi(\varphi)(\gamma)|>1$ without loss of generality. Pick a real number $c \in \mathbb{R}$ with

$$
|\Phi(\varphi)(\gamma)|>c>1
$$

The functions

$$
f_{n}:=c^{-n} \delta_{n}
$$

converge to 0 in $\ell^{1}(\Gamma)$ as $n \rightarrow \infty$ because $0<c^{-1}<1$. Thus

$$
0=\lim _{n \rightarrow \infty} \varphi\left(f_{n}\right)=\lim _{n \rightarrow \infty} c^{-n} \Phi(\varphi)(\gamma)^{n}
$$

This is a contradiction because $\left|c^{-n} \Phi(\varphi)(\gamma)^{n}\right|>1$. Thus we get $|\Phi(\varphi)(\gamma)|=1$ for all $\gamma \in \Gamma$. This implies that Φ is well-defined.
Let $\chi \in \Gamma^{\wedge}$. Note that $\Psi(\chi)$ is a continuous functional (because $\left.|\Psi(\chi)(f)| \leqslant\|f\|\right)$. Consider $\gamma, \mu \in \Gamma$ then we have

$$
\Psi(\chi)\left(\delta_{\gamma} * \delta_{\mu}\right)=\Psi(\chi)\left(\delta_{\gamma \mu}\right)=\chi(\gamma \mu)=\chi(\gamma) \chi(\mu)=\Phi(\chi)(\gamma) \Phi(\chi)(\mu)
$$

This implies

$$
\Psi(\chi)(f * g)=\Psi(\chi)(f) \Psi(\chi)(g)
$$

for all $f, g \in \ell^{1}(\Gamma)$ with finite support by linearity of Ψ. The functions with finite support are dense in $\ell^{1}(\Gamma)$, so the continuity of Φ and the continuity of convolution imply that $\Psi(\chi)$ is an algebra morphism. Therefore the map Ψ is well-defined.
We have

$$
\Phi(\Psi(\chi))(\gamma)=\Psi(\chi)\left(\delta_{\gamma}\right)=\chi(\gamma)
$$

for each $\chi \in \Gamma^{\wedge}$ and $\gamma \in \Gamma$. For each $\varphi \in \ell^{1}(\Gamma)$, we have

$$
\Psi(\Phi(\varphi))\left(\delta_{\gamma}\right)=\Phi(\varphi)(\gamma)=\varphi\left(\delta_{\gamma}\right)
$$

By linearity and continuity, this implies $\Psi(\Phi(\varphi))=\varphi$. Thus Φ and Ψ are inverse to one another.
3. Let $A=L^{1}([0,1])$ be the Volterra algebra (see Example 1.6 (iv) in the notes) and $f_{0} \equiv 1$. Identify the subalgebra of A generated by f_{0}.
Solution: Let $g \in L^{1}([0,1])$ be a function. Put

$$
F(x):=f_{0} * g(x)=\int_{0}^{x} g(t) d t
$$

The Lebesgue differentiation theorem implies $F^{\prime}(x)=f(x)$ for almost all $x \in[0,1]$. Moreover, we have $F(0)=0$. This determines the function f uniquely.
We define recursively

$$
f_{n+1}:=f_{0} * f_{n}
$$

for each $n \geqslant 0$. We claim $f_{n}(x)=x^{n} / n$! for each $n \geqslant 0$. We prove it by induction on n. The case $n=0$ follows from the definition of f_{0}. If the induction hypothesis is satisfied for some $n \in \mathbb{N}$, note that

$$
\frac{d}{d x}\left(x^{n+1} /(n+1)!\right)=x^{n} / n!
$$

So the uniqueness of the antiderivative implies the claimed equality.
Because A is commutative the subalgebra generated by f_{0} must be the algebra of polynomial functions $\mathbb{C}[X]$.

