Functional Analysis II

Exercise Sheet 2 - Solutions

1. Let X be a locally compact Hausdorff space. Compute the spectrum $\text{Sp}_{C_0(X)}(f)$ for each $f \in C_0(X)$.

Solution: Suppose X is compact and let $f \in C(X)(=C_0(X))$. We claim that f is invertible if and only if $f(x) \neq 0$ for all $x \in X$. Suppose f is invertible. Then there exists $g \in C(X)$ with fg = e. The unit in C(X) is the constant function with value 1, so this implies f(x)g(x) = 1for all $x \in X$. This equality implies $f(x) \neq 0$ for all $x \in X$.

Suppose $f(x) \neq 0$ for all $x \in X$. Then f defines a continuous map

$$f: X \to \mathbb{C}^{*}$$

where we consider $\mathbb{C}^* \subset \mathbb{C}$ with the subspace topology. The inversion map

inv:
$$\mathbb{C}^* \to \mathbb{C}^*, \ z \mapsto z^{-1}$$

is holomorphic, so it is continuous. Define the continuous function $g := inv \circ f$. Then

$$f(x)g(x) = f(x)\operatorname{inv}(f(x)) = 1.$$

Thus fg = e, so f is invertible.

We can apply the claim to obtain

$$\operatorname{Sp}_{C(X)}(f) = \{\lambda \in \mathbb{C} \mid f - \lambda e \text{ not invertible}\} = \{\lambda \in \mathbb{C} \mid \exists x \in X : f(x) - \lambda = 0\} = \operatorname{im}(f).$$

Suppose X is not compact. The algebra $C_0(X)$ is not unital, so for each $f \in C_0(X)$ we have defined

$$\operatorname{Sp}_{C_0(X)}(f) := \operatorname{Sp}_{(C_0(X))_I}(f).$$

We use the isomorphism $\phi : (C_0(X))_I \cong C(\alpha X)$ where αX denotes the one-point compactification of X to write

$$\operatorname{Sp}_{(C_0(X))_I}(f) = \operatorname{Sp}_{C(\alpha X)}(\phi(f)) = \operatorname{im}(\phi(f)).$$

I claim

$$\operatorname{im}(\phi(f)) = \overline{\operatorname{im}(f)}$$

for all $f \in C_0(X)$. Indeed, note that $\operatorname{im}(\phi(f))$ is compact because αX is compact. This implies that $\operatorname{im}(\phi(f))$ is closed in \mathbb{R} and hence $\operatorname{im}(f) \subset \operatorname{im}(\phi(f))$. For the other direction, let $(x_n)_n \in X$ be a sequence converging to ∞ in αX . Then

$$\phi(f)(\infty) = \lim_{n \to \infty} \phi(f)(x_n) = \lim_{n \to \infty} f(x_n).$$

This gives $\phi(f)(\infty) \in \overline{\operatorname{im}(f)}$. Thus we get

$$\operatorname{im}(\phi(f)) = \operatorname{im}(f) \cup \{\phi(f)(\infty)\} \subset \operatorname{im}(f).$$

We arrive at

 $\operatorname{Sp}_{C_0(X)}(f) = \overline{\operatorname{im}(f)}$

for all $f \in C_0(X)$.

Functional Analysis II

Prof. Marc Burger

D-MATH

2. Let Γ be an abelian group and $A = \ell^1(\Gamma)$ with convolution product. Compute the Guelfand spectrum \widehat{A} of A as a set.

Solution: Let Γ^{\wedge} be the set of group morphism $\Gamma \to \mathbb{T}$, where $\mathbb{T} := \{z \in \mathbb{C}^* : |z| = 1\}$. We construct a bijection

$$\begin{split} \Phi &: \widehat{A} \to \Gamma^{\wedge}, \, \varphi \mapsto (\gamma \mapsto \varphi(\delta_{\gamma})) \\ \Psi &: \Gamma^{\wedge} \to \widehat{A}, \, \chi \mapsto \bigg(f \mapsto \sum_{\gamma \in \Gamma} f(\gamma) \chi(\gamma) \bigg). \end{split}$$

Let $\varphi \in \widehat{A}$. For all $\gamma, \mu \in \Gamma$, we have

$$\Phi(\varphi)(\gamma\mu) = \varphi(\delta_{\gamma\mu}) = \varphi(\delta_{\gamma})\varphi(\delta_{\mu}) = \Phi(\varphi)(\gamma)\Phi(\varphi)(\mu).$$

So the function $\Phi(\varphi)$ is multiplicative.

Suppose $\varphi(\delta_1) = 0$. Then $\varphi(\delta_a) = \varphi(\delta_a * \delta_1) = \varphi(\delta_a)\varphi(\delta_1) = 0$. This implies that φ vanishes at all functions with finite support. These are dense in A, so this implies $\varphi = 0$ by continuity of φ . This is a contradiction to φ lying in the Guelfand spectrum, so we must have $\varphi(\delta_1) \neq 0$. The multiplicativity property implies

$$\Phi(\varphi)(1) = \Phi(\varphi)(1 \cdot 1) = \Phi(\varphi)(1)^2.$$

Thus $\Phi(\varphi)(1) = 1$. In particular,

$$1 = \Phi(\varphi)(1) = \Phi(\varphi)(\gamma\gamma^{-1}) = \Phi(\varphi)(\gamma)\Phi(\varphi)(\gamma^{-1})$$

for each $\gamma \in \Gamma$. Thus we get $\Phi(\varphi)(\gamma) \neq 0$ and $\Phi(\varphi)(\gamma^{-1}) = \Phi(\varphi)(\gamma)^{-1}$ for each $\gamma \in \Gamma$. Suppose there is $\gamma \in \Gamma$ with $|\Phi(\varphi)(\gamma)| \neq 1$. We either have $|\Phi(\varphi)(\gamma)| > 1$ or $|\Phi(\varphi)(\gamma^{-1})| > 1$, so we can assume $|\Phi(\varphi)(\gamma)| > 1$ without loss of generality. Pick a real number $c \in \mathbb{R}$ with

$$|\Phi(\varphi)(\gamma)| > c > 1.$$

The functions

$$f_n := c^{-n} \delta_n$$

converge to 0 in $\ell^1(\Gamma)$ as $n \to \infty$ because $0 < c^{-1} < 1$. Thus

$$0 = \lim_{n \to \infty} \varphi(f_n) = \lim_{n \to \infty} c^{-n} \Phi(\varphi)(\gamma)^n.$$

This is a contradiction because $|c^{-n}\Phi(\varphi)(\gamma)^n| > 1$. Thus we get $|\Phi(\varphi)(\gamma)| = 1$ for all $\gamma \in \Gamma$. This implies that Φ is well-defined.

Let $\chi \in \Gamma^{\wedge}$. Note that $\Psi(\chi)$ is a continuous functional (because $|\Psi(\chi)(f)| \leq ||f||$). Consider $\gamma, \mu \in \Gamma$ then we have

$$\Psi(\chi)(\delta_{\gamma} * \delta_{\mu}) = \Psi(\chi)(\delta_{\gamma\mu}) = \chi(\gamma\mu) = \chi(\gamma)\chi(\mu) = \Phi(\chi)(\gamma)\Phi(\chi)(\mu).$$

D-MATH Prof. Marc Burger

This implies

$$\Psi(\chi)(f * g) = \Psi(\chi)(f)\Psi(\chi)(g)$$

Functional Analysis II

for all $f, g \in \ell^1(\Gamma)$ with finite support by linearity of Ψ . The functions with finite support are dense in $\ell^1(\Gamma)$, so the continuity of Φ and the continuity of convolution imply that $\Psi(\chi)$ is an algebra morphism. Therefore the map Ψ is well-defined.

We have

$$\Phi(\Psi(\chi))(\gamma) = \Psi(\chi)(\delta_{\gamma}) = \chi(\gamma)$$

for each $\chi \in \Gamma^{\wedge}$ and $\gamma \in \Gamma$. For each $\varphi \in \ell^{1}(\Gamma)$, we have

$$\Psi(\Phi(\varphi))(\delta_{\gamma}) = \Phi(\varphi)(\gamma) = \varphi(\delta_{\gamma}).$$

By linearity and continuity, this implies $\Psi(\Phi(\varphi)) = \varphi$. Thus Φ and Ψ are inverse to one another.

3. Let $A = L^1([0,1])$ be the Volterra algebra (see Example 1.6 (iv) in the notes) and $f_0 \equiv 1$. Identify the subalgebra of A generated by f_0 .

Solution: Let $g \in L^1([0,1])$ be a function. Put

$$F(x) := f_0 * g(x) = \int_0^x g(t) dt.$$

The Lebesgue differentiation theorem implies F'(x) = f(x) for almost all $x \in [0, 1]$. Moreover, we have F(0) = 0. This determines the function f uniquely.

We define recursively

$$f_{n+1} := f_0 * f_n$$

for each $n \ge 0$. We claim $f_n(x) = x^n/n!$ for each $n \ge 0$. We prove it by induction on n. The case n = 0 follows from the definition of f_0 . If the induction hypothesis is satisfied for some $n \in \mathbb{N}$, note that

$$\frac{d}{dx}(x^{n+1}/(n+1)!) = x^n/n!.$$

So the uniqueness of the antiderivative implies the claimed equality.

Because A is commutative the subalgebra generated by f_0 must be the algebra of polynomial functions $\mathbb{C}[X]$.