D-MATH Prof. Marc Burger Functional Analysis II

Exercise Sheet 4 - Solutions

1. Let X be a non-compact LCH space and αX the one-point compactification of X. Show that the natural isomorphism from Sheet 1

$$C_0(X)_I \to C(\alpha X)$$

is norm preserving.

2. Let $\mathscr H$ be a complex Hilbert space and $E\subset \mathscr H$ a vector subspace. Show

$$(E^{\perp})^{\perp} = \overline{E}.$$

3. Let \mathscr{H} be a complex Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Prove

$$\ker(T^*) = (\operatorname{im}(T))^{\perp}$$

and

 $\ker(T) = (\operatorname{im}(T^*))^{\perp}.$

4. Let \mathscr{H} be a finite-dimensional complex Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Prove that T is normal if and only if \mathscr{H} admits an orthonormal basis of eigenvectors.