Exercise Sheet 4 - Solutions

1. Let X be a non-compact LCH space and αX the one-point compactification of X. Show that the natural isomorphism from Sheet 1

$$
C_{0}(X)_{I} \rightarrow C(\alpha X)
$$

is norm preserving, where we equip $C_{0}(X)_{I}$ with the norm from Proposition 4.4.
Solution: We begin by proving the following claim: Let A be an involutive Banach algebra. Suppose there are continuous norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on A (a continuous norm is defined to be a norm which recovers the topology on A) which satisfy the C^{*}-condition

$$
\left\|x x^{*}\right\|_{i}=\|x\|_{i}^{2}
$$

for all $x \in A$. Then $\|\cdot\|_{1}=\|\cdot\|_{2}$.
Let $x \in A$. If x is self-adjoint, then we have

$$
\|x\|_{1}=\|x\|_{\mathrm{Sp}}=\|x\|_{2}
$$

Let $x \in A$ be arbitrary. There exists self-adjoint $x_{1}, x_{2} \in A$ such that $x=x_{1}+i x_{2}$. The above equation implies

$$
\|x\|_{1}=\left\|\left(x_{1}+i x_{2}\right)\left(x_{1}+i x_{2}\right)^{*}\right\|_{1}^{1 / 2}=\left\|x_{1}^{2}+x_{2}^{2}\right\|_{1}^{1 / 2}=\left\|x_{1}^{2}+x_{2}^{2}\right\|_{2}^{1 / 2}=\|x\|_{2}
$$

Let A, B be C^{*}-algebras and $\Phi: A \rightarrow B$ an injective morphism of involutive Banach algebras, i.e. an injective homomorphism with $\Phi\left(x^{*}\right)=\Phi(x)^{*}$ for all $x \in A$. Then

$$
\|x\|_{\text {new }}:=\|\Phi(x)\|
$$

is a continuous norm on A (by the open mapping theorem), which satisfies the C^{*}-condition. Therefore, the claim implies

$$
\|x\|=\|x\|_{\text {new }}=\|\Phi(x)\|
$$

for all $x \in A$. Thus Φ is norm-preserving. In particular, the natural isomorphism from Sheet 1 is norm-preserving (because it intwertwines the involutions).
2. Let \mathscr{H} be a complex Hilbert space and $E \subset \mathscr{H}$ a vector subspace. Show

$$
\left(E^{\perp}\right)^{\perp}=\bar{E}
$$

Solution: Note that any continuous functional $\mathscr{H} \rightarrow \mathbb{C}$, which vanishes on E, automatically vanishes on \bar{E} by continuity. Thus we have

$$
\bar{E}^{\perp}=E^{\perp}
$$

This means it suffices to prove the claim for closed subspaces E because the claim for \bar{E} implies the theorem for E.
Assume E is a closed subspace. The inclusion

$$
E \subset\left(E^{\perp}\right)^{\perp}
$$

can be proven by unwrapping the definitions. Let $v \in\left(E^{\perp}\right)^{\perp}$. Because E is a closed subspace of a Hilbert space, there are unique vectors $e_{0} \in E$ and $e_{1} \in E^{\perp}$ such that $v=e_{0}+e_{1}$. We have

$$
0=\left\langle v, e_{1}\right\rangle=\left\|e_{1}\right\|^{2}
$$

Hence $v \in E$.
3. Let \mathscr{H} be a complex Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Prove

$$
\operatorname{ker}\left(T^{*}\right)=(\operatorname{im}(T))^{\perp}
$$

and

$$
\operatorname{ker}(T)=\left(\operatorname{im}\left(T^{*}\right)\right)^{\perp}
$$

Solution: We only give the proof of the first equality because the second equality follows from the first equality and $T^{* *}=T$. Let $v \in \mathscr{H}$. We have a chain of equivalences

$$
\begin{aligned}
v \in \operatorname{ker}\left(T^{*}\right) & \Leftrightarrow T^{*} v=0 \\
& \Leftrightarrow \forall w \in \mathscr{H}:\left\langle T^{*} v, w\right\rangle=0 \\
& \Leftrightarrow \forall w \in \mathscr{H}:\langle v, T w\rangle=0 \\
& \Leftrightarrow v \in \operatorname{im}(T) .
\end{aligned}
$$

4. Let \mathscr{H} be a finite-dimensional complex Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Prove that T is normal if and only if \mathscr{H} admits an orthonormal basis of eigenvectors.
Solution: Suppose T is normal. The spectral theorem states that \mathscr{H} admits an orthonormal basis of eigenvectors for T.
Suppose there is an ONB $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathscr{H} such that $T e_{i}=\lambda_{i} e_{i}$ for $\lambda_{i} \in \mathbb{C}$. We have

$$
\left\langle T^{*} e_{i}, e_{j}\right\rangle=\left\langle e_{i}, T e_{j}\right\rangle=\overline{\lambda_{j}} \delta_{i j}
$$

Thus $T^{*} e_{i}=\overline{\lambda_{i}} e_{i}$, so

$$
T\left(T^{*} e_{i}\right)=\left|\lambda_{i}\right|^{2} e_{i}
$$

and

$$
T^{*}\left(T e_{i}\right)=\left|\lambda_{i}\right|^{2} e_{i} .
$$

The vectors e_{i} generate \mathscr{H}, so

$$
T T^{*}=T^{*} T
$$

