D-MATH Prof. Marc Burger Functional Analysis II

$\mathrm{FS}\ 2024$

Exercise Sheet 5

Let X be a compact Hausdorff space, \mathcal{B} the set of Borel sets in X, \mathscr{H} a Hilbert space, and

$$E: \mathcal{B} \to \mathcal{L}(\mathscr{H})$$

a resolution of the identity. Define

$$N := \{ f \in \mathcal{B}^{\infty}(X) : \|f\|_{\infty} = 0 \}.$$

- 1. Show that the space $\mathcal{B}^{\infty}(X)$ equipped with the supremum norm $\|\cdot\|$ is a C*-algebra.
- 2. Prove for all $f, g \in \mathcal{B}^{\infty}(X)$:
 - (a) $||f||_{\infty} \leq ||f||$.
 - (b) $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.
 - (c) $||fg||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$.
- 3. Prove the equality $||f+g||_{\infty} = ||f||_{\infty}$ for all $f \in \mathcal{B}^{\infty}(X)$ and $g \in N$. Deduce that the quotient norm on $\mathcal{B}^{\infty}(X)/N$ is given by $||f+N|| = ||f||_{\infty}$.
- 4. Show that $L^{\infty}(X) := \mathcal{B}^{\infty}(X)/N$ equipped with the quotient norm is a C*-algebra. Furthermore, show that

$$\operatorname{Sp}_{L^{\infty}(X)}(f+N) = \operatorname{essim}(f)$$

the spectrum equals the essential image for all $f \in \mathcal{B}^{\infty}(X)$.