D-MATH Prof. Marc Burger

Exercise Sheet 5 - Solutions

Functional Analysis II

Let X be a compact Hausdorff space, \mathcal{B} the set of Borel sets in X, \mathscr{H} a Hilbert space, and

$$E\colon \mathcal{B}\to \mathcal{L}(\mathscr{H})$$

a resolution of the identity. Define

$$N := \{ f \in \mathcal{B}^{\infty}(X) : \|f\|_{\infty} = 0 \}$$

1. Show that the space $\mathcal{B}^{\infty}(X)$ equipped with the supremum norm $\|\cdot\|$ is a C*-algebra. Solution: We only cover parts of the proof. Let $(f_n) \in \mathcal{B}^{\infty}(X)$ be a Cauchy sequence. By definition of the norm, the pointwise limit

$$f(x) := \lim_{n \to \infty} f_n(x)$$

exists. A result in measure theory shows that f is measurable. Let $\epsilon > 0$ and pick $N \ge 0$ such that $||f_n - f_m|| < \epsilon$ for all $n, m \ge N$. This implies

$$|f_n(x) - f(x)| = \lim_{n \to \infty} |f_n(x) - f_m(x)| \le \epsilon$$

for all $x \in X$. Hence $f_n \to f$ as $n \to \infty$. Let $f \in \mathcal{B}^{\infty}(X)$ then we have

$$||ff^*|| = \sup_{x \in X} |f(x)f^*(x)| = \sup_{x \in X} |f(x)|^2 = \left(\sup_{x \in X} |f(x)|\right)^2 = ||f||^2.$$

- 2. Prove for all $f, g \in \mathcal{B}^{\infty}(X)$:
 - (a) $||f||_{\infty} \leq ||f||$.
 - (b) $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.
 - (c) $||fg||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$.

Solution: Let $f \in \mathcal{B}^{\infty}(X)$. I claim

$$||f||_{\infty} = \inf\{t \ge 0 \mid E(f^{-1}(\{|z| > t\})) = 0\}.$$

The inequality

$$||f||_{\infty} \leq \inf\{t \ge 0 \mid E(f^{-1}(\{|z| > t\})) = 0\}$$

follows from the definition of $||f||_{\infty}$. Consider $t > ||f||_{\infty}$. Then $f^{-1}(\{|z| > t\}) \subset \operatorname{essIm}(f)^c$. Thus there exists a countable open cover $f^{-1}(\{|z| > t\}) = \bigcup_{n \in \mathbb{N}} D_n$ such that $E(D_n) = 0$ for all $n \in \mathbb{N}$. This implies $E(f^{-1}(\{|z| > t\})) = 0$ from which we get the opposite inequality. Let $f, g \in \mathcal{B}^{\infty}(X)$. Then

$$\|f\|_{\infty} = \inf\{t \ge 0 \mid E(f^{-1}(\{|z| > t\})) = 0\} \leqslant \inf\{t \ge 0 \mid f^{-1}(\{|z| > t\}) = \emptyset\} = \|f\|$$

FS 2024

D-MATH Prof. Marc Burger

Consider $\lambda_i > ||f_i||_{\infty}$. Consider $x \in X$ such that $|f(x) + g(x)| > \lambda_1 + \lambda_2$. We either have $|f(x)| > \lambda_1$ or we have $|g(x)| > \lambda_2$. This gives

$$(f_1 + f_2)^{-1}(\{|z| > \lambda_1 + \lambda_2\}) \subset f_1^{-1}(\{|z| > \lambda_1\} \cup f_2^{-1}(\{|z| > \lambda_2\})$$

and thus

$$E((f_1 + f_2)^{-1}(\{|z| > \lambda_1 + \lambda_2\})) = 0$$

by the third property of a resolution of the identity. A similar argument proves the inequality (c).

3. Prove the equality $||f+g||_{\infty} = ||f||_{\infty}$ for all $f \in \mathcal{B}^{\infty}(X)$ and $g \in N$. Deduce that the quotient norm on $\mathcal{B}^{\infty}(X)/N$ is given by $||f+N|| = ||f||_{\infty}$.

Solution: By Exercise 2, (ii) we have

$$\|f+g\|_{\infty} \leqslant \|f\|_{\infty} + \|g\|_{\infty} = \|f\|_{\infty}$$

We have $-g \in N$ (by homogeneity of $\|\cdot\|_{\infty}$), so

$$||f||_{\infty} = ||(f+g) - g||_{\infty} \leq ||f+g||_{\infty}.$$

The quotient norm is by definition

$$||f + N|| = \inf_{e \in N} ||f + e|| \ge \inf_{e \in N} ||f + e||_{\infty} = ||f||_{\infty}.$$

Define

$$e(x) := \begin{cases} -f(x) & \text{if } f(x) \notin \operatorname{essim}(f) \\ 0 & \text{else.} \end{cases}$$

Then $e \in N$ because $E(f^{-1}(\operatorname{essim}(f))^c) = 0$. We get

$$||f + N|| \leq ||f + e|| = ||f||_{\infty}.$$

4. Show that $L^{\infty}(X) := \mathcal{B}^{\infty}(X)/N$ equipped with the quotient norm is a C*-algebra. Furthermore, show that

$$\operatorname{Sp}_{L^{\infty}(X)}(f+N) = \operatorname{essim}(f)$$

the spectrum equals the essential image for all $f \in \mathcal{B}^{\infty}(X)$.

Solution: Let $f \in \mathcal{B}^{\infty}(X)$ and define $a(z) := |z|^2$ for all $z \in \mathbb{C}$. Then $ff^* = a \circ f$. Each open subset $U \subset \mathbb{C}$ satisfies

$$U \subset (\operatorname{essim}(ff^*))^c \Leftrightarrow E((ff^*)^{-1}(U)) = 0 \Leftrightarrow E(f^{-1}(a^{-1}(U))) = 0 \Leftrightarrow a^{-1}(U) \subset (\operatorname{essim}(f))^c.$$

This implies (after a small argument)

$$\operatorname{essim}(ff^*) = a(\operatorname{essim}(f))$$

D-MATH Prof. Marc Burger Functional Analysis II

FS 2024

oi. Marc Durge

and hence

$$\|ff^*\|_{\infty} = \sup\{|\lambda| : \lambda \in \operatorname{essim}(ff^*)\} = \sup\{|a(\lambda)| : \lambda \in \operatorname{essim}(f)\} = \sup\{|\lambda|^2 : \lambda \in \operatorname{essim}(f)\} = \|f\|_{\infty}^2.$$

Let $f \in \mathcal{B}^{\infty}(X)$ and suppose there is $g \in \mathcal{B}^{\infty}(X)$ such that fg + N = 1 + N. There is a Borel subset $C_1 \subset X$ such that $E(C_1) = 0$ and

$$f(x)g(x) = 1$$

for all $x \notin C_1$. There is a Borel subset $C_2 \subset X$ such that $|g(x)| \leq ||g||_{\infty}$ for all $x \notin C_2$ and $E(C_2) = 0$. For all $x \notin C_1 \cup C_2$ we have

$$|f(x)| = 1/|g(x)| \ge 1/||g||_{\infty}$$

Put $r := 1/(2||g||_{\infty})$ then

$$f^{-1}(B_r(0)) \subset C_1 \cup C_2.$$

This implies $0 \notin \operatorname{essim}(f)$ because

$$E(f^{-1}(B_r(0))) = E(f^{-1}(B_r(0)) \cap (C_1 \cup C_2)) = E(f^{-1}(B_r(0)))E(C_1 \cup C_2) = 0$$

Let $f \in \mathcal{B}^{\infty}(X)$ and suppose $0 \notin \operatorname{essim}(f)$. The essential image is closed, so there exists r > 0 such that $B_r(0) \subset \operatorname{essim}(f)^c$. Let $S := \{x \in X \mid f(x) \in \operatorname{essim}(f)\}$. The set S is a Borel subset because $\operatorname{essim}(f)$ is closed and f is measurable. The definition of the essential image implies

$$E(S) = 0.$$

Define

$$g(x) := \begin{cases} 1/g(x) & \text{if } x \in S \\ 0 & \text{else.} \end{cases}$$

We have f(x)g(x) = 1 for all $x \in X'$. This says the function fg - 1 is supported on S^c . Hence $fg - 1 \in N$ and thus

$$fg + N = 1 + N.$$

We arrive at

$$0 \in \operatorname{Sp}_{L^{\infty}(X)}(f+N) \Leftrightarrow 0 \notin \operatorname{essim}(f)$$

for each $f \in \mathcal{B}^{\infty}(X)$. Note that $\lambda \in \operatorname{Sp}_{L^{\infty}(X)}(f+N)$ if and only if $0 \in \operatorname{Sp}_{L^{\infty}(X)}(f-\lambda+N)$ for all $f \in \mathcal{B}^{\infty}(X)$ and $\lambda \in \mathbb{C}$.