Exercise Sheet 5 - Solutions

Let X be a compact Hausdorff space, \mathcal{B} the set of Borel sets in X, \mathscr{H} a Hilbert space, and

$$
E: \mathcal{B} \rightarrow \mathcal{L}(\mathscr{H})
$$

a resolution of the identity. Define

$$
N:=\left\{f \in \mathcal{B}^{\infty}(X):\|f\|_{\infty}=0\right\}
$$

1. Show that the space $\mathcal{B}^{\infty}(X)$ equipped with the supremum norm $\|\cdot\|$ is a C^{*}-algebra.

Solution: We only cover parts of the proof. Let $\left(f_{n}\right) \in \mathcal{B}^{\infty}(X)$ be a Cauchy sequence. By definition of the norm, the pointwise limit

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)
$$

exists. A result in measure theory shows that f is measurable. Let $\epsilon>0$ and pick $N \geqslant 0$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ for all $n, m \geqslant N$. This implies

$$
\left|f_{n}(x)-f(x)\right|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \leqslant \epsilon
$$

for all $x \in X$. Hence $f_{n} \rightarrow f$ as $n \rightarrow \infty$.
Let $f \in \mathcal{B}^{\infty}(X)$ then we have

$$
\left\|f f^{*}\right\|=\sup _{x \in X}\left|f(x) f^{*}(x)\right|=\sup _{x \in X}|f(x)|^{2}=\left(\sup _{x \in X}|f(x)|\right)^{2}=\|f\|^{2}
$$

2. Prove for all $f, g \in \mathcal{B}^{\infty}(X)$:
(a) $\|f\|_{\infty} \leqslant\|f\|$.
(b) $\|f+g\|_{\infty} \leqslant\|f\|_{\infty}+\|g\|_{\infty}$.
(c) $\|f g\|_{\infty} \leqslant\|f\|_{\infty}\|g\|_{\infty}$.

Solution: Let $f \in \mathcal{B}^{\infty}(X)$. I claim

$$
\|f\|_{\infty}=\inf \left\{t \geqslant 0 \mid E\left(f^{-1}(\{|z|>t\})\right)=0\right\}
$$

The inequality

$$
\|f\|_{\infty} \leqslant \inf \left\{t \geqslant 0 \mid E\left(f^{-1}(\{|z|>t\})\right)=0\right\}
$$

follows from the definition of $\|f\|_{\infty}$. Consider $t>\|f\|_{\infty}$. Then $f^{-1}(\{|z|>t\}) \subset \operatorname{essIm}(f)^{c}$. Thus there exists a countable open cover $f^{-1}(\{|z|>t\})=\cup_{n \in \mathbb{N}} D_{n}$ such that $E\left(D_{n}\right)=0$ for all $n \in \mathbb{N}$. This implies $E\left(f^{-1}(\{|z|>t\})\right)=0$ from which we get the opposite inequality.
Let $f, g \in \mathcal{B}^{\infty}(X)$. Then

$$
\|f\|_{\infty}=\inf \left\{t \geqslant 0 \mid E\left(f^{-1}(\{|z|>t\})\right)=0\right\} \leqslant \inf \left\{t \geqslant 0 \mid f^{-1}(\{|z|>t\})=\emptyset\right\}=\|f\|
$$

Consider $\lambda_{i}>\left\|f_{i}\right\|_{\infty}$. Consider $x \in X$ such that $|f(x)+g(x)|>\lambda_{1}+\lambda_{2}$. We either have $|f(x)|>\lambda_{1}$ or we have $|g(x)|>\lambda_{2}$. This gives

$$
\left(f_{1}+f_{2}\right)^{-1}\left(\left\{|z|>\lambda_{1}+\lambda_{2}\right\}\right) \subset f_{1}^{-1}\left(\{ | z | > \lambda _ { 1 } \} \cup f _ { 2 } ^ { - 1 } \left(\left\{|z|>\lambda_{2}\right\}\right.\right.
$$

and thus

$$
E\left(\left(f_{1}+f_{2}\right)^{-1}\left(\left\{|z|>\lambda_{1}+\lambda_{2}\right\}\right)\right)=0
$$

by the third property of a resolution of the identity. A similar argument proves the inequality (c).
3. Prove the equality $\|f+g\|_{\infty}=\|f\|_{\infty}$ for all $f \in \mathcal{B}^{\infty}(X)$ and $g \in N$. Deduce that the quotient norm on $\mathcal{B}^{\infty}(X) / N$ is given by $\|f+N\|=\|f\|_{\infty}$.
Solution: By Exercise 2, (ii) we have

$$
\|f+g\|_{\infty} \leqslant\|f\|_{\infty}+\|g\|_{\infty}=\|f\|_{\infty}
$$

We have $-g \in N$ (by homogeneity of $\|\cdot\|_{\infty}$), so

$$
\|f\|_{\infty}=\|(f+g)-g\|_{\infty} \leqslant\|f+g\|_{\infty}
$$

The quotient norm is by definition

$$
\|f+N\|=\inf _{e \in N}\|f+e\| \geqslant \inf _{e \in N}\|f+e\|_{\infty}=\|f\|_{\infty}
$$

Define

$$
e(x):= \begin{cases}-f(x) & \text { if } f(x) \notin \operatorname{essim}(f) \\ 0 & \text { else }\end{cases}
$$

Then $e \in N$ because $E\left(f^{-1}(\operatorname{essim}(f))^{c}\right)=0$. We get

$$
\|f+N\| \leqslant\|f+e\|=\|f\|_{\infty}
$$

4. Show that $L^{\infty}(X):=\mathcal{B}^{\infty}(X) / N$ equipped with the quotient norm is a C^{*}-algebra. Furthermore, show that

$$
\operatorname{Sp}_{L^{\infty}(X)}(f+N)=\operatorname{essim}(f)
$$

the spectrum equals the essential image for all $f \in \mathcal{B}^{\infty}(X)$.
Solution: Let $f \in \mathcal{B}^{\infty}(X)$ and define $a(z):=|z|^{2}$ for all $z \in \mathbb{C}$. Then $f f^{*}=a \circ f$. Each open subset $U \subset \mathbb{C}$ satisfies
$U \subset\left(\operatorname{essim}\left(f f^{*}\right)\right)^{c} \Leftrightarrow E\left(\left(f f^{*}\right)^{-1}(U)\right)=0 \Leftrightarrow E\left(f^{-1}\left(a^{-1}(U)\right)\right)=0 \Leftrightarrow a^{-1}(U) \subset(\operatorname{essim}(f))^{c}$.
This implies (after a small argument)

$$
\operatorname{essim}\left(f f^{*}\right)=a(\operatorname{essim}(f))
$$

and hence
$\left\|f f^{*}\right\|_{\infty}=\sup \left\{|\lambda|: \lambda \in \operatorname{essim}\left(f f^{*}\right)\right\}=\sup \{|a(\lambda)|: \lambda \in \operatorname{essim}(f)\}=\sup \left\{|\lambda|^{2}: \lambda \in \operatorname{essim}(f)\right\}=\|f\|_{\infty}^{2}$.
Let $f \in \mathcal{B}^{\infty}(X)$ and suppose there is $g \in \mathcal{B}^{\infty}(X)$ such that $f g+N=1+N$. There is a Borel subset $C_{1} \subset X$ such that $E\left(C_{1}\right)=0$ and

$$
f(x) g(x)=1
$$

for all $x \notin C_{1}$. There is a Borel subset $C_{2} \subset X$ such that $|g(x)| \leqslant\|g\|_{\infty}$ for all $x \notin C_{2}$ and $E\left(C_{2}\right)=0$. For all $x \notin C_{1} \cup C_{2}$ we have

$$
|f(x)|=1 /|g(x)| \geqslant 1 /\|g\|_{\infty}
$$

Put $r:=1 /\left(2\|g\|_{\infty}\right)$ then

$$
f^{-1}\left(B_{r}(0)\right) \subset C_{1} \cup C_{2}
$$

This implies $0 \notin \operatorname{essim}(f)$ because

$$
E\left(f^{-1}\left(B_{r}(0)\right)\right)=E\left(f^{-1}\left(B_{r}(0)\right) \cap\left(C_{1} \cup C_{2}\right)\right)=E\left(f^{-1}\left(B_{r}(0)\right)\right) E\left(C_{1} \cup C_{2}\right)=0
$$

Let $f \in \mathcal{B}^{\infty}(X)$ and suppose $0 \notin \operatorname{essim}(f)$. The essential image is closed, so there exists $r>0$ such that $B_{r}(0) \subset \operatorname{essim}(f)^{c}$. Let $S:=\{x \in X \mid f(x) \in \operatorname{essim}(f)\}$. The set S is a Borel subset because essim (f) is closed and f is measurable. The definition of the essential image implies

$$
E(S)=0
$$

Define

$$
g(x):= \begin{cases}1 / g(x) & \text { if } x \in S \\ 0 & \text { else }\end{cases}
$$

We have $f(x) g(x)=1$ for all $x \in X^{\prime}$. This says the function $f g-1$ is supported on S^{c}. Hence $f g-1 \in N$ and thus

$$
f g+N=1+N
$$

We arrive at

$$
0 \in \operatorname{Sp}_{L^{\infty}(X)}(f+N) \Leftrightarrow 0 \notin \operatorname{essim}(f)
$$

for each $f \in \mathcal{B}^{\infty}(X)$. Note that $\lambda \in \operatorname{Sp}_{L^{\infty}(X)}(f+N)$ if and only if $0 \in \operatorname{Sp}_{L^{\infty}(X)}(f-\lambda+N)$ for all $f \in \mathcal{B}^{\infty}(X)$ and $\lambda \in \mathbb{C}$.

