Functional Analysis II

Exercise Sheet 6 - Solutions

1. Let \mathscr{H} be a finite-dimensional Hilbert space and let $T: \mathscr{H} \to \mathscr{H}$ be a self-adjoint endomorphism. Define

$$A := \{p(T) : p \in \mathbb{C}[X]\}$$

to be the (unital) sub-C*-algebra generated by T.

- (a) Show that there is $v \in \mathscr{H}$ with $Av = \mathscr{H}$ if and only if each eigenvalue of T has multiplicity one.
- (b) Identify the Guelfand spectrum \widehat{A} with the usual spectrum

$$\operatorname{Sp}(T) := \{ \lambda \in \mathbb{C} \mid \exists v \in \mathscr{H} - \{0\} : Tv = \lambda v \}.$$

(c) Denote by \mathcal{B} be the Borel subsets of \widehat{A} . The spectral theorem shows that there is a resolution of the identity $E: \mathcal{B} \to \mathscr{L}(\mathscr{H})$ such that

$$T = \int_{\widehat{A}} T dE$$

Determine the map E.

Solution:

(a) Suppose there is $v \in V$ such that $Av = \mathscr{H}$. By the spectral theorem, there is unique decomposition $v = \sum_{\lambda \in \operatorname{Sp}(T)} v_{\lambda}$ such that $Tv_{\lambda} = \lambda v_{\lambda}$. This implies that \mathscr{H} is spanned by the v_{λ} because we have

$$P(T)v = \sum_{\lambda \in \operatorname{Sp}(T)} P(\lambda)v_{\lambda}$$

for each $P(X) \in \mathbb{C}[X]$. Thus there are at least dim (\mathscr{H}) vectors in $\{v_{\lambda} : \lambda \in \operatorname{Sp}(T)\}$. This implies that there are at least dim (\mathscr{H}) distinct eigenvectors hence that all eigenvalues occur with multiplicity 1.

Suppose each eigenvalue has multiplicity one. We have $1 \in A$, so by replacing T with $T + \lambda$ we can assume that all eigenvalues are non-zero. Pick an eigenvector $v_{\lambda} \in \mathscr{H}$ to each eigenvalue $\lambda \in \operatorname{Sp}(T)$ and consider the map

$$(x_i) \in \mathbb{C}^{\dim} \mapsto \sum_{i=1}^n x_i \lambda^i v_\lambda \in \mathscr{H}.$$

The computation of the Vandermonde determinant shows that this map is an isomorphism. Every element in the image of this map is also an element in Av. Thus $Av = \mathcal{H}$.

(b) Consider the map

$$\operatorname{ev}_T \colon \chi \in A \mapsto \chi(T) \in \mathbb{C}.$$

Functional Analysis II

Let $\chi \in \widehat{A}$. We have

$$\chi(T - \chi(T)) = \chi(T) - \chi(T)\chi(1)) = 0.$$

Suppose $\operatorname{ev}_T(\chi) = \chi(T) \notin \operatorname{Sp}(T)$. All eigenvalues of $T - \chi(T)$ are non-zero, so the characteristic polynomial $\operatorname{char}_{T-\chi(T)}(X)$ is coprime to X. The Chinese remainder theorem says that there are polynomials $P, Q \in \mathbb{C}[X]$ with

$$1 = P \operatorname{char}_{T-\chi(T)}(X) + QX.$$

If we put $X = T - \chi(T)T$ in this relation, then the Cayley-Hamilton theorem says

$$1 = Q(T - \chi(T))(T - \chi(T)).$$

Thus $(T - \chi(T))^{-1} = Q(T - \chi(T)) \in A$. This implies

$$1 = \chi(1) = \chi((T - \lambda)^{-1}(T - \lambda)) = \chi(T - \chi(T))\chi((T - \chi(T))^{-1}) = 0.$$

This is a contradiction thus $\chi(T) \in \text{Sp}(T)$.

Suppose $\lambda \in \text{Sp}(T)$. Then there is $v \in \mathscr{H} - \{0\}$ with $Tv = \lambda v$. This implies that for each $x \in A$ there is a unique $\chi(x) \in \mathbb{C}$ with

$$xv = \chi(x)v.$$

The map $\chi: A \to \mathbb{C}$ is a character because

$$(xy)v = x(yv) = x(\chi(y)v) = \chi(y)(xv) = \chi(x)\chi(y)v.$$

It satisfies $\chi(T) = \lambda$. Thus the map ev_T defines a bijection between \widehat{A} and Sp(T). Both sides are discrete spaces, so the map ev_T is a homeomorphism.

(c) Define the set $E_{\lambda} := \{ v \in \mathscr{H} : Tv = \lambda v \}$ and the operator $P_{\lambda} := E(\{\lambda\})$ for each $\lambda \in \operatorname{Sp}(T)$. Note that we have

$$\int f(\lambda) dE_{x,y}(\lambda) = \sum_{\lambda \in \operatorname{Sp}(T)} f(\lambda) E_{x,y}(\lambda) = \sum_{\lambda \in \operatorname{Sp}(T)} f(\lambda) \langle P_{\lambda} x, y \rangle.$$

for all $x, y \in \mathscr{H}$. This implies

c

$$\langle Tx, y \rangle = \sum_{\lambda \in \operatorname{Sp}(T)} \lambda \langle P_{\lambda}x, y \rangle = \left\langle \sum_{i=1}^{n} \lambda P_{\lambda}x, y \right\rangle.$$

Thus

$$T = \sum_{\lambda \in \operatorname{Sp}(T)} \lambda P_{\lambda}$$

FS 2024

Functional Analysis II

For each $v \in \mathscr{H}$ we have

$$TP_{\lambda_0}v = \sum_{\lambda \in \operatorname{Sp}(T)} \lambda P_{\lambda} P_{\lambda_0} v.$$

Note that

$$P_{\lambda}P_{\lambda'} = E(\{\lambda\} \cap \{\lambda'\}) = E(\emptyset) = 0$$

if $\lambda \neq \lambda'$. Thus we get

$$TP_{\lambda_0}v = \lambda P_{\lambda_0}^2 v = \lambda P_{\lambda_0}v$$

because P_{λ} is a projection. This implies that the image of P_{λ} is contained in E_{λ} . We also have

$$\sum_{\lambda \in \operatorname{Sp}(T)} P_{\lambda} = 1$$

Thus the image P_{λ} must be E_{λ} because, if it were smaller, the sum of the images of the P_{λ} could not generate \mathscr{H} . This uniquely determines P_{λ} as the orthogonal projection to E_{λ} . This completely describes E because

$$E(\{\lambda_1,\ldots,\lambda_n\}) = \sum_{i=1}^n P_{\lambda_i}$$

for all pairwise distinct $\lambda_i \in \operatorname{Sp}(T)$.

2. Let \mathscr{H} be a Hilbert space and $U \in \mathscr{L}(\mathscr{H})$ a unitary operator. Define the C*-algebra

$$A := \overline{\{p(U, U^*) : p \in \mathbb{C}[X, Y]\}}.$$

This algebra is commutative, so the spectral theorem implies that there is a resolution of the identity E with

$$U = \int_{\widehat{A}} U dE.$$

Define the set $X := \{\chi \in \widehat{A} : \chi(U) = 1\}.$

(a) Let $\chi \in \widehat{A}$. Prove $|\chi(U)| = 1$. Apply the formula for the geometric series to obtain

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \chi(U^n) = \mathbb{1}_X(\chi)$$

for each $\chi \in \widehat{A}$ where 1_X denotes the indicator function of X.

(b) Let $W := \{v \in \mathscr{H} : Uv = v\}$ and denote by $P : \mathscr{H} \to \mathscr{H}$ the orthogonal projection onto W. Prove

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^i v = P v$$

for each $v \in \mathscr{H}$.

FS 2024

Functional Analysis II

Hint: Use Exercise (a) and dominated convergence to prove

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^i = \int_{\widehat{A}} 1_X dE = E(X).$$

This result is known as von Neumann's ergodic theorem. Applications of this theorem can be found in [Zi, Ch. 4.4].

Solution:

(a) We have

$$1 = \chi(1) = \chi(UU^*) = \chi(U)\chi(U^*) = |\chi(U)|^2.$$

Consider a complex number $z \in \mathbb{C}$ with $z \neq 1$. The geometric series says

$$\frac{1}{n}\sum_{i=0}^{n-1}z^i = \frac{1}{n}\frac{1-z^n}{1-z}.$$

If |z| = 1, then

$$\left|\frac{1}{n}\frac{1-z^n}{1-z}\right| \leqslant \frac{2}{|1-z|n.}$$

This converges to 0 as $n \to \infty$. If z = 1, then the sum on the left evaluates to

$$\frac{1}{n}\sum_{i=0}^{n-1} z^n = 1.$$

(b) For each $n \ge 1$ define the operator

$$S_n := \frac{1}{n} \sum_{i=0}^{n-1} U^i - E(X)$$

Let $v \in \mathscr{H}$. We have

$$\langle S_n v, S_n v \rangle = \langle S_n^* S_n v, v \rangle.$$

Note that we have

$$\left|\frac{1}{n}\sum_{i=0}^{n-1}(\chi(U)^n - 1_X(\chi))\right|^2 \le \left(\frac{1}{n}\sum_{i=0}^{n-1}(|\chi(U)^n| + 1)\right)^2 = 4.$$

Therefore, the first claim, exercise (a) and the dominated convergence theorem implies

$$\lim_{n \to \infty} \langle S_n^* S_n v, v \rangle = \lim_{n \to \infty} \int \left| \frac{1}{n} \sum_{i=0}^{n-1} (\chi(U)^n - 1_X) \right|^2 dE_{v,v} = 0$$

FS 2024

for each $v \in \mathscr{H}$. We can plug this into the previous equation to get

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^i v = E(X)v.$$

Let $v \in \mathscr{H}$. Note that we have

$$\frac{1}{n}\sum_{i=0}^{n-1}U^{i}v - \frac{1}{n}\sum_{i=1}^{n}U^{i}v = \frac{v+U^{n}v}{n}.$$

This converges to zero as $n \to \infty$, so we get

$$UE(X)v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^{i+1}v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^{i}v = E(X)v.$$

Thus $im(E(X)) \subset W$. Suppose $v \in W$, then

$$E(X)v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} U^i v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} v = v$$

because $U^i v = v$ for each $i \ge 0$ (since $v \in W$). Thus im(E(X)) = W. Hence E(X) is the orthogonal projection onto W.