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Exercise Sheet 6 - Solutions

1. Let H be a finite-dimensional Hilbert space and let T : H → H be a self-adjoint endomor-
phism. Define

A := {p(T ) : p ∈ C[X]}

to be the (unital) sub-C*-algebra generated by T .

(a) Show that there is v ∈ H with Av = H if and only if each eigenvalue of T has
multiplicity one.

(b) Identify the Guelfand spectrum Â with the usual spectrum

Sp(T ) := {λ ∈ C | ∃v ∈ H − {0} : Tv = λv}.

(c) Denote by B be the Borel subsets of Â. The spectral theorem shows that there is a
resolution of the identity E : B → L (H ) such that

T =

∫
Â

TdE.

Determine the map E.

Solution:

(a) Suppose there is v ∈ V such that Av = H . By the spectral theorem, there is unique
decomposition v =

∑
λ∈Sp(T ) vλ such that Tvλ = λvλ. This implies that H is spanned

by the vλ because we have

P (T )v =
∑

λ∈Sp(T )

P (λ)vλ

for each P (X) ∈ C[X]. Thus there are at least dim(H ) vectors in {vλ : λ ∈ Sp(T )}. This
implies that there are at least dim(H ) distinct eigenvectors hence that all eigenvalues
occur with multiplicity 1.

Suppose each eigenvalue has multiplicity one. We have 1 ∈ A, so by replacing T with
T + λ we can assume that all eigenvalues are non-zero. Pick an eigenvector vλ ∈ H to
each eigenvalue λ ∈ Sp(T ) and consider the map

(xi) ∈ Cdim 7→
n∑

i=1

xiλ
ivλ ∈ H .

The computation of the Vandermonde determinant shows that this map is an isomor-
phism. Every element in the image of this map is also an element in Av. Thus Av = H .
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(b) Consider the map

evT : χ ∈ Â 7→ χ(T ) ∈ C.

Let χ ∈ Â. We have

χ(T − χ(T )) = χ(T )− χ(T )χ(1)) = 0.

Suppose evT (χ) = χ(T ) /∈ Sp(T ). All eigenvalues of T −χ(T ) are non-zero, so the char-
acteristic polynomial charT−χ(T )(X) is coprime to X. The Chinese remainder theorem
says that there are polynomials P,Q ∈ C[X] with

1 = P charT−χ(T )(X) +QX.

If we put X = T − χ(T )T in this relation, then the Cayley-Hamilton theorem says

1 = Q(T − χ(T ))(T − χ(T )).

Thus (T − χ(T ))−1 = Q(T − χ(T )) ∈ A. This implies

1 = χ(1) = χ((T − λ)−1(T − λ)) = χ(T − χ(T ))χ((T − χ(T ))−1) = 0.

This is a contradiction thus χ(T ) ∈ Sp(T ).

Suppose λ ∈ Sp(T ). Then there is v ∈ H − {0} with Tv = λv. This implies that for
each x ∈ A there is a unique χ(x) ∈ C with

xv = χ(x)v.

The map χ : A → C is a character because

(xy)v = x(yv) = x(χ(y)v) = χ(y)(xv) = χ(x)χ(y)v.

It satisfies χ(T ) = λ. Thus the map evT defines a bijection between Â and Sp(T ). Both
sides are discrete spaces, so the map evT is a homeomorphism.

(c) Define the set Eλ := {v ∈ H : Tv = λv} and the operator Pλ := E({λ}) for each
λ ∈ Sp(T ). Note that we have∫

f(λ)dEx,y(λ) =
∑

λ∈Sp(T )

f(λ)Ex,y(λ) =
∑

λ∈Sp(T )

f(λ)⟨Pλx, y⟩.

for all x, y ∈ H . This implies

⟨Tx, y⟩ =
∑

λ∈Sp(T )

λ⟨Pλx, y⟩ =

〈
n∑

i=1

λPλx, y

〉
.

Thus
T =

∑
λ∈Sp(T )

λPλ.
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For each v ∈ H we have
TPλ0v =

∑
λ∈Sp(T )

λPλPλ0v.

Note that
PλPλ′ = E({λ} ∩ {λ′}) = E(∅) = 0

if λ ̸= λ′. Thus we get
TPλ0

v = λP 2
λ0
v = λPλ0

v

because Pλ is a projection. This implies that the image of Pλ is contained in Eλ. We
also have ∑

λ∈Sp(T )

Pλ = 1.

Thus the image Pλ must be Eλ because, if it were smaller, the sum of the images of the
Pλ could not generate H . This uniquely determines Pλ as the orthogonal projection to
Eλ. This completely describes E because

E({λ1, . . . , λn}) =
n∑

i=1

Pλi

for all pairwise distinct λi ∈ Sp(T ).

2. Let H be a Hilbert space and U ∈ L (H ) a unitary operator. Define the C*-algebra

A := {p(U,U∗) : p ∈ C[X,Y ]}.

This algebra is commutative, so the spectral theorem implies that there is a resolution of the
identity E with

U =

∫
Â

UdE.

Define the set X := {χ ∈ Â : χ(U) = 1}.

(a) Let χ ∈ Â. Prove |χ(U)| = 1. Apply the formula for the geometric series to obtain

lim
n→∞

1

n

n−1∑
i=0

χ(Un) = 1X(χ)

for each χ ∈ Â where 1X denotes the indicator function of X.

(b) Let W := {v ∈ H : Uv = v} and denote by P : H → H the orthogonal projection
onto W . Prove

lim
n→∞

1

n

n−1∑
i=0

U iv = Pv

for each v ∈ H .
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Hint: Use Exercise (a) and dominated convergence to prove

lim
n→∞

1

n

n−1∑
i=0

U i =

∫
Â

1XdE = E(X).

This result is known as von Neumann’s ergodic theorem. Applications of this theorem
can be found in [Zi, Ch. 4.4].

Solution:

(a) We have
1 = χ(1) = χ(UU∗) = χ(U)χ(U∗) = |χ(U)|2.

Consider a complex number z ∈ C with z ̸= 1. The geometric series says

1

n

n−1∑
i=0

zi =
1

n

1− zn

1− z
.

If |z| = 1, then ∣∣∣∣∣ 1n 1− zn

1− z

∣∣∣∣∣ ⩽ 2

|1− z|n.

This converges to 0 as n → ∞. If z = 1, then the sum on the left evaluates to

1

n

n−1∑
i=0

zn = 1.

(b) For each n ⩾ 1 define the operator

Sn :=
1

n

n−1∑
i=0

U i − E(X).

Let v ∈ H . We have
⟨Snv, Snv⟩ = ⟨S∗

nSnv, v⟩.

Note that we have∣∣∣∣∣ 1n
n−1∑
i=0

(χ(U)n − 1X(χ))

∣∣∣∣∣
2

⩽

(
1

n

n−1∑
i=0

(|χ(U)n|+ 1)

)2

= 4.

Therefore, the first claim, exercise (a) and the dominated convergence theorem implies

lim
n→∞

⟨S∗
nSnv, v⟩ = lim

n→∞

∫ ∣∣∣∣ 1n
n−1∑
i=0

(χ(U)n − 1X)

∣∣∣∣2dEv,v = 0
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for each v ∈ H . We can plug this into the previous equation to get

lim
n→∞

1

n

n−1∑
i=0

U iv = E(X)v.

Let v ∈ H . Note that we have

1

n

n−1∑
i=0

U iv − 1

n

n∑
i=1

U iv =
v + Unv

n
.

This converges to zero as n → ∞, so we get

UE(X)v = lim
n→∞

1

n

n−1∑
i=0

U i+1v = lim
n→∞

1

n

n−1∑
i=0

U iv = E(X)v.

Thus im(E(X)) ⊂ W . Suppose v ∈ W , then

E(X)v = lim
n→∞

1

n

n−1∑
i=0

U iv = lim
n→∞

1

n

n−1∑
i=0

v = v

because U iv = v for each i ⩾ 0 (since v ∈ W ). Thus im(E(X)) = W . Hence E(X) is
the orthogonal projection onto W .

5


