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Exercise Sheet 7 - Solutions

1. Let 4% be a Hilbert space and T' € B(.#) a normal operator. Show that
1T = sup{|(Tz, z)| : ||| < 1}
Hint: Use
17| = max{|A| : A € Sp(T)}
and the spectral theorem for normal operators.
Solution: Because T is normal, we have
1Tl = [1T|sp
where the right-hand side refers to the spectral norm of T in £ (5#). This says

IT|| = max{|A| : A € Sp(T)}.

Let A € Spg () (T). I claim that there is a sequence z,, € J such that [|z,| = 1 and
limy, oo (Txy, — Azy,) = 0. Indeed, define D,, := {z € Sp(T) : |z — A\| < 1/n} for each
n = 1. Let E be the resolution of the identity on Sp(T') defined by the spectral theorem.
Then E(D,,) # 0 by Theorem 5.20 (iv) in the lecture, so there exists x,, € im(FE(D,,)) with
|zn|| = 1. We have

| Tan = Az|* = (T = (T = N)*@n, z0)

:/ |T — \?dE,, .,

n

< n72/ dE,, », < n=2.
D,

Now this implies
A= Tim [(Tzy, zn)|

n—oo

and hence
Al < sup{[(Tx, x)| : ||lz[| < 1}.

Taking the supremum over all eigenvalues yields
17N < sup{[(Tz, )| : ||=] <1}.

Note that we have
(Ta, x)|| < | T|| ||zl < [T/l

for all x € JZ by the Cauchy-Schwarz inequality. Hence

[Tl = sup{[{Tz, z)| : [lz] <1}
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2. Let S be a Hilbert space and T € B(4) a normal operator. Suppose there is an operator

S € B(#) such that
S = / fdEy
Sp(T)

for some f € B>(Sp(T)). This implies that S is a normal operator. Prove that the resolutions
of the identity Fr and Eg associated with T and S by the spectral theorem are related by

Es(w) = Er(f~'(w))

for each Borel set w C Sp(.5).

Solution: For each Borel set w C Sp(S) define E(w) := E7(f~!(w)). This is a resolution of the
identity for Sp(.S). For each g € B> (Sp(S)), an approximation argument with step-functions

proves
/ gdE = / go fdEr.
Sp(S) Sp(T)

B := {gEC(Sp(S)) :/ ngg:/ ng}.
Sp(S) Sp(S)

This is a C*-algebra because the multiplication of two functions integrates to the composition
of the operators, the complex conjugate of a function integrates to the adjoint operator, and
the uniform limit of functions integrates to a uniform limit of operators. Note that 1 € B
because

Define

/ dEs = Es(Sp(S)) = idp = E(Sp(S)) = / dE.
Sp(S) Sp(S)

We also have
/ SdE = fdEp =S = SdEg.
Sp(S) Sp(T) Sp(S)

Thus we get S € B. Note that for each distinct A\, v € Sp(5), we have S(\) # S(v) (because
S(A) = A) and 1(A) = 1. Thus the assumptions of the Stone-Weierstrass theorem are satisfied
and B is dense in C(Sp(9)). Note that B is a complete subspace of C(Sp(S5)), so it is closed
and hence B = C(Sp(S)). In other words, each T' € A satisfies

/ TdE = TdEg.
Sp(S) Sp(S)

The spectral theorem says that Eg is the unique resolution of the identity with this property.
Thus E = Eg and hence
Es(w) = B(w) = Er(f'(w))

for each Borel set w C Sp(.5).
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3. Let G be a finite group and H < G a proper subgroup. Recall that G acts on a set X doubly
transitively if for all 1, 2, y1,y2 € X with 21 # 29 and y; # yo there is g € G with x1 = gxo
and y; = gys. Define the Hilbert space

H = {feKQG/H > flgH) _0}

geG/H

and put (7(g)f)(xH) := f(g~'axH) for all f € 5 and g,z € G. This G-action defines a
unitary representation of G on 4. Show that 7 is irreducible if and only if the G-action on
G/H is doubly transitive.

Solution: Consider a G-equivariant map T': (*(G/H) — ¢*>(G/H). There exists a kernel
K € (?(G/H x G/H) such that

> 9K

geG/H

for all f € (>(G/H) and x € G. Each g € G satisfies

> f@)K(d g ')

g’ €G/H

T( Z f -t / /,l‘>: Z f(g/)K(gglvx)'

9g'€eG/H 9g'€eG/H

and

The G-equivariance of T' implies

K(gg',x) =K(g',g™ x).
Define the function ¢: H\G/H — C by ¢(g) := K(1,g)/|H|. We have
> H@K(gr) = > f@K(g'e)= > [f(g * ¢()
geG/H geG/H 9g9'=x

where * denotes the convolution.
Conversely, any function ¢: H\G/H — C defines a G-equivariant map Ty(f) := f * ¢. This
constructs a linear map

®: (*(H\G/H) — Endg(¢*(G/H)), ¢+ Ty.

where Endg(¢2(G/H)) is the space of G-equivariant endomorphisms. Note that this map
is injective because T,(01) = ¢, where ¢; is the function supported at the point 1 € G/H.
Moreover, it is surjective by the above argument.

We have a map of sets

p: H\G/H — G\(G/H x G/H), g+~ (1,9).
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Suppose ¢(g) = ¢(g’). Then there is g € G such that

(1L,g)=(g",9"9").

The equation in the first coordinate says ¢ € H. The equation in the second coordinate
implies g € Hg’ H. Hence the map is injective. Let (g,¢") € G\(G/H x G/H). We have

(9.9)=(Lg7'g) =g '),

so  is bijective.

Let 1 € £2(G/H) be the constant function. The trivial representation G-equivariantly injects
into ¢2(G/H) via the map
A= N|G/H]|.

This is a section to the G-equivariant summation map

C(G/H) > C, f > flg)

geG/H
whose kernel is . Thus we get a G-equivariant splitting

A(G/H)=naC.

Suppose G acts doubly transitively on G/H. Then
G\(G/H x G/H) =2 {0,1}

consists of precisely two points, namely the orbit of the diagonal and the off-diagonal. This
implies

dimc(Endg (¢2(G/H))) = 2

because ® is an isomorphism. This implies
dim¢(Endg(m)) = 1.

because H < G is a proper subgroup. Thus 5 is irreducible.

Suppose 7 is irreducible. We consider two cases. Suppose |G/H| > 2. We have dim(s¢) =
|G/H|—1 > 1. Because 4 is irreducible, this implies that # is not the trivial representation.
Schur’s Lemma implies

dimc(Endg (¢2(G/H))) = 2.
Thus |G\(G/H x G/H)| = 2. This means there is only one off-diagonal orbit in G/H x G/H
but this is precisely what it means for G to act doubly transitively. Suppose |G/H| = 2. Let

g € G— H. The double transitivity says that (1, g) can be mapped to (1, g) or (g, 1) and this
follows from ¢(1,¢9) = (g, 1)..



