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Exercise Sheet 8 - Solutions

1. Recall that a compact Hausdorff space S is called totally disconnected if the connected com-
ponents of S are precisely the points. For each compact Hausdorff space S, we define

Cfin(S) := {f ∈ C(S) : |im(f)| <∞}.

Note that Cfin(S) is an involutive and unital subalgebra of C(S). Let A be a Banach algebra,
then define

Afin = {x ∈ A|∃p ∈ C[X] : p(x) = 0}.

Note that Cfin(S) = (C(S))fin.

(a) Prove that the following conditions are equivalent for a compact Hausdorff space S:

i. The space S is totally disconnected.

ii. For each pair of disctinct points s1, s2 ∈ S there exists a clopen decomposition
S = S1 ⊔ S2 such that s1 ∈ S1 and s2 ∈ S2.

iii. For each pair of distinct points s1, s2 ∈ S there exists a continuous function ϕ : S →
{0, 1} such that ϕ(s1) = 0 and ϕ(s2) = 1.

iv. The subalgebra Cfin(S) ⊂ C(S) is dense.

Hint: To prove i. implies ii, use that the connected component Q ⊂ S of a point x ∈ S
in a compact Hausdorff space S can be written as

Q =
⋂

x∈C⊂S
C clopen

C

Prove iii. implies iv. by using the Stone-Weierstrass theorem.

(b) Let X be a compact Hausdorff space. Prove that there exists a totally disconnected
compact Hausdorff space S and a continuous surjection S → X.

Hint: Consider the inclusion

C(X) → Cb(Xdisc) = {f ∈ CX |∃C ⩾ 0 ∀x ∈ X : |f(x)| ⩽ C}

where Cb(Xdisc) is the set of bounded continuous functions on the discrete space Xdisc

i.e. the set of all bounded functions X → C. The algebra Cb(Xdisc) is a C*-algebra
with

(Cb(Xdisc))fin = {f ∈ CX ||im(f)| <∞}.

Prove that (Cb(Xdisc))fin ⊂ Cb(Xdisc) is a dense subspace. Then the induced morphism
on the Guelfand spectrum

̂Cb(Xdisc) → X

is a surjection from a totally disconnected compact Hausdorff space to X.
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Solution:

(a) Suppose S is totally disconnected and consider distinct s1, s2 ∈ S. The hint says that
there is a clopen subset s1 ∈ S1 ⊂ S such that s2 /∈ S1. Thus we get s2 ∈ S2 := Sc

1.

Suppose condition ii. is satisfied and consider distinct s1, s2 ∈ S. Then there exists a
clopen S1 ⊂ S with s1 ∈ S1 and s2 /∈ S1. The indicator function ϕ := 1Sc

1
is continuous

because S1 is both open and closed. This function satisfies ϕ(s1) = 0 and ϕ(s2) = 1.

Suppose condition iii. is satisfied. Note that the subalgebra Cfin(S) ⊂ C(S) is involutive
and unital, so the conditions of the Stone-Weierstrass theorem are satisfied if the algebra
can separate points. The condition iii. implies that functions with finite image separate
points. Thus condition iv. is satisfied by the Stone-Weierstrass theorem.

Suppose condition iv. is satisfied. Consider two distinct points s1, s2 ∈ S. Urysohns
Lemma implies that there is a continuous function ϕ ∈ C(S) such that ϕ(s1) = 0 and
ϕ(s2) = 1. There exists an approximation ϕ̃ ∈ Cfin(S) such that ∥ϕ − ϕ̃∥ < 1/2. Let
D := {z ∈ C : |z| < 1/2} and D̃ := {z ∈ D : z ∈ im(ϕ̃)}. Note that

ϕ̃−1(D) = ϕ̃−1(D̃)

is an equality of a closed set and an open set. Thus ϕ−1(D) is open and closed. Moreover,
s1 ∈ ϕ−1(D) and s2 /∈ ϕ−1(D), so the condition ii. is satisfied.

Suppose condition ii. is satisfied. Consider a connected component Q of a point x ∈ S.
Suppose there is y ∈ Q such that y ̸= x. Then there is a clopen S1 ⊂ S such that
x ∈ S1 and y /∈ S1. Thus Q∩S1 = S1 but this contradicts y ∈ Q. Thus y /∈ Q and hence
Q = {x}.

(b) Define the algebra A := Cb(Xdisc) := {f ∈ CX |∃C ⩾ 0 ∀x ∈ X : |f(x)| ⩽ C}. It is a
C*-algebra.

Let f ∈ A and consider a polynomial p =
∏

i(X − αi), αi ∈ C. Then p(f)(x) =∏n
i=1(f(x)− αi) so p(f) = 0 is equivalent to im(f) ⊂ {αi : 1 ⩽ i ⩽ n}. This implies

(Cb(Xdisc))fin = {f ∈ CX : |im(f)| <∞}.

Consider any function f ∈ A and ϵ > 0. Cover the image of f by a finite, disjoint union
D1, . . . , Dn ⊂ C of non-empty subsets each which are contained in balls of radius < ϵ
centered around a point xi ∈ Di. Define

f̃(x) :=

n∑
i=1

xi1f−1(Di)

Note that f̃ ∈ Afin and ∥f − f̃∥ < ϵ, thus we get that Afin ⊂ A is a dense subalgebra.

The Guelfand isomorphism provides an identification Afin ∼= C(Â)fin of subspaces in

A ∼= C(Â). Since Afin ⊂ A is dense, this implies C(Â)fin = Cfin(Â) ⊂ C(Â) is dense.

Thus Exercise (a) implies that Â is totally disconnected.

Suppose the complement of the image of

ϕ : Â→ X
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is non-empty. The space Â is compact, so by continuity the complement of ϕ(Â) is
open. Urysohns’s Lemma implies that there is a function ψ ∈ C(X) such that ψ ̸= 0
and ψ ◦ ϕ = 0. But this contradicts the injectivity of C(X) → A. Thus

Â→ X

is surjective.

2. Prove that the quotient groups Qp/Zp are discrete for each prime p ∈ N. Moreover, prove
that they are isomorphic to

{z ∈ T|∃n ⩾ 1 : zp
n

= 1}
as abstract groups.

Solution: To prove that Qp/Zp is discrete, means to prove that {x + Zp} ⊂ Qp/Zp is open
for each x ∈ Qp. Note that the preimage under the quotient map π : Qp → Qp/Zp is given by
π−1(x+ Zp) = x+ Zp. Because Zp is open we get that x+ Zp is open. Since π is a quotient
map, this implies the point {x+ Zp} is open. Thus the quotient is discrete.

We construct the map as follows: each non-zero x ∈ Qp has a unique power series expansion

x =
∑
n⩾N

xnp
n

where xn ∈ {0, . . . , p − 1} and N ∈ Z such that aN ̸= 0. Define χ : Qp → {z ∈ T|∃n ⩾ 1 :
zp

n

= 1} by the formula

χ(x) := exp

( ∑
0>n⩾N

2πixnp
n

)
Note that χ(x+ y) = χ(x)χ(y). The kernel of the map is Zp and the map is surjective, so χ
factors through to an isomorphism

Qp/Zp
∼−→ {z ∈ T|∃n ⩾ 1 : zp

n

= 1}.

Note, however, that χ does not induce an isomorphism of topological groups. This morphism
is only continuous but not open.

3. Let G be a connected topological group and Γ ◁ G a discrete normal subgroup. Show that
Γ is contained in the center of G.

Solution: Let γ ∈ Γ and consider the conjugation map

c : G→ G, g 7→ gγg−1.

The subgroup Γ is normal, so the image of c is contained in Γ. Thus the conjugation map
factors as

c̃ : G→ Γ

with i ◦ c̃ = c where i : Γ → G is the inclusion. The map c̃ is a continuous map from a
connected space to a discrete space hence it is constant. It satisfies c(1) = γ, so

gγg−1 = c(g) = i(c̃(g)) = i(c̃(1)) = c(1) = γ

for all g ∈ G. Thus γ ∈ Z(G).
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