Exercise Sheet 9

1. Let F be a finite abelian group. Prove $\widehat{F} \cong F$.
2. For each $a \in \mathbb{R}$, define the additive character $\chi_{a}(t):=e^{2 \pi i a t}$ for $t \in \mathbb{R}$. Prove that the map

$$
\Psi: \mathbb{R} \rightarrow \widehat{\mathbb{R}}, a \mapsto \chi_{a}
$$

is an isomorphism of topological groups.
3. Deduce $\widehat{\mathbb{T}} \cong \mathbb{Z}$ from Exercise 2 .
4. Let F_{n} be a finite abelian group for all $n \geqslant 1$ and put $G:=\prod_{i \geqslant 1} F_{n}$ with the product topology. Show that

$$
\widehat{G} \cong \bigoplus_{n \geqslant 1} F_{n}
$$

as topological groups where the group on the right is equipped with the discrete topology.
Hint: Prove that there is a neighborhood $1 \in V \subset \mathbb{T}$ of the identity such that any subgroup $H<\mathbb{T}$ with $H \subset V$ satisfies $H=\{1\}$.
5. Let $\chi: \mathbb{Q}_{p} \rightarrow \mathbb{T}$ be the continuous character constructed in the lecture (with $\left.\operatorname{ker}(\chi)=\mathbb{Z}_{p}\right)$. For each $a \in \mathbb{Q}_{p}$, define $\chi_{a}(t):=\chi(a t)$ for each $t \in \mathbb{Q}_{p}$. Show that the map

$$
\Psi: \mathbb{Q}_{p} \rightarrow \widehat{\mathbb{Q}_{p}}, a \mapsto \chi_{a}
$$

is an isomorphism of topological groups.
Hint: Prove that for each character $\gamma \in \widehat{G}$ there is $n \in \mathbb{Z}$ such that $\gamma\left(p^{n} x\right)=1$ for all $x \in \mathbb{Z}_{p}$. Thus $\tilde{\gamma}(x):=\gamma\left(p^{n} x\right)$ factors through $\mathbb{Q}_{p} / \mathbb{Z}_{p}$. Define the subgroups

$$
A_{-n}:=\left\{x \in \mathbb{Q}_{p} / \mathbb{Z}_{p}: p^{n} x=0\right\}
$$

for $n \geqslant 1$. Determine the group $\widehat{\mathbb{Q}_{p} / \mathbb{Z}_{p}}$ by noting that the diagram

$$
\cdots \hookrightarrow A_{-(n-1)} \hookrightarrow A_{-n} \hookrightarrow A_{-(n+1)} \hookrightarrow \cdots
$$

dualizes to

$$
\cdots \leftarrow \widehat{A}_{-(n-1)} \leftarrow \widehat{A}_{-n} \leftarrow \widehat{A}_{-(n+1)} \hookrightarrow \cdots
$$

under the Pontryagin dual.
6. Let $K_{j}<G_{j}$ be a compact subgroup in a LCH group G_{j} indexed by $j \in J$. Show that the restricted product $\prod_{j \in J}^{\prime} G_{j}$ is a locally compact Hausdorff space.
7. Define the adeles

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p}
$$

to be the product of \mathbb{R} with the restricted restricted product over all primes $p \in \mathbb{N}$, where we take the product with respect to the subgroups $\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$.
(a) Prove that the multiplication map $\mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{A}_{\mathbb{Q}},(x, y) \mapsto x y$ is continuous.
(b) Consider the diagonal map $\Delta: \mathbb{Q} \rightarrow \mathbb{A}_{\mathbb{Q}}, x \mapsto(x, x)$. Prove that the image of Δ is a discrete, closed subgroup of $\mathbb{A}_{\mathbb{Q}}$.
(c) Prove that the quotient $\mathbb{A}_{\mathbb{Q}} / \Delta(\mathbb{Q})$ is compact.
8. Show that for every $x \in \mathbb{Q}_{p}$ there exist unique $a_{n} \in\{0, \ldots, p-1\}$ for $n \geqslant v_{p}(x)$ such that

$$
x=\sum_{n \geqslant v_{p}(x)} a_{n} p^{n} .
$$

9. Using Exercise 8, we define the fractional part of a p-adic number $x \in \mathbb{Q}_{p}$ to be

$$
\{x\}:=\sum_{0>n>v_{p}(x)} a_{n} p^{n} \in \mathbb{Q}
$$

where $x=\sum_{n \geqslant v_{p}(x)} a_{n} p^{n}$. Define the map $\chi: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{T}$ by

$$
\chi\left(x_{\infty}, x_{p}\right):=e^{2 \pi i\left\{x_{\infty}\right\}} \prod_{p} e^{2 \pi i\left\{x_{p}\right\}} .
$$

(a) Prove that χ is a continuous character on $\mathbb{A}_{\mathbb{Q}}$.
(b) Define the character $\chi_{a}(x):=\chi(a x)$ for all $a, x \in \mathbb{A}_{\mathbb{Q}}$. Show that the map

$$
\mathbb{A}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{A}_{\mathbb{Q}}}, a \mapsto \chi_{a}
$$

is an isomorphism of topological groups.

