D-MATH Prof. Marc Burger Functional Analysis II

Exercise Sheet 9

- 1. Let F be a finite abelian group. Prove $\widehat{F} \cong F$.
- 2. For each $a \in \mathbb{R}$, define the additive character $\chi_a(t) := e^{2\pi i a t}$ for $t \in \mathbb{R}$. Prove that the map

$$\Psi \colon \mathbb{R} \to \mathbb{R}, \ a \mapsto \chi_a$$

is an isomorphism of topological groups.

- 3. Deduce $\widehat{\mathbb{T}} \cong \mathbb{Z}$ from Exercise 2.
- 4. Let F_n be a finite abelian group for all $n \ge 1$ and put $G := \prod_{i \ge 1} F_n$ with the product topology. Show that

$$\widehat{G} \cong \bigoplus_{n \ge 1} F_n$$

as topological groups where the group on the right is equipped with the discrete topology. Hint: Prove that there is a neighborhood $1 \in V \subset \mathbb{T}$ of the identity such that any subgroup $H < \mathbb{T}$ with $H \subset V$ satisfies $H = \{1\}$.

5. Let $\chi: \mathbb{Q}_p \to \mathbb{T}$ be the continuous character constructed in the lecture (with $\ker(\chi) = \mathbb{Z}_p$). For each $a \in \mathbb{Q}_p$, define $\chi_a(t) := \chi(at)$ for each $t \in \mathbb{Q}_p$. Show that the map

$$\Psi \colon \mathbb{Q}_p \to \widehat{\mathbb{Q}_p}, \ a \mapsto \chi_a$$

is an isomorphism of topological groups.

Hint: Prove that for each character $\gamma \in \widehat{G}$ there is $n \in \mathbb{Z}$ such that $\gamma(p^n x) = 1$ for all $x \in \mathbb{Z}_p$. Thus $\tilde{\gamma}(x) := \gamma(p^n x)$ factors through $\mathbb{Q}_p/\mathbb{Z}_p$. Define the subgroups

$$A_{-n} := \{ x \in \mathbb{Q}_p / \mathbb{Z}_p : p^n x = 0 \}$$

for $n \ge 1$. Determine the group $\widehat{\mathbb{Q}_p/\mathbb{Z}_p}$ by noting that the diagram

$$\cdots \hookrightarrow A_{-(n-1)} \hookrightarrow A_{-n} \hookrightarrow A_{-(n+1)} \hookrightarrow \cdots$$

dualizes to

$$\cdots \twoheadleftarrow \widehat{A}_{-(n-1)} \twoheadleftarrow \widehat{A}_{-n} \twoheadleftarrow \widehat{A}_{-(n+1)} \hookrightarrow \cdots$$

under the Pontryagin dual.

- 6. Let $K_j < G_j$ be a compact subgroup in a LCH group G_j indexed by $j \in J$. Show that the restricted product $\prod_{i \in J} G_j$ is a locally compact Hausdorff space.
- 7. Define the adeles

$$\mathbb{A}_{\mathbb{Q}} := \mathbb{R} imes \prod_{p}' \mathbb{Q}_{p}$$

to be the product of \mathbb{R} with the restricted restricted product over all primes $p \in \mathbb{N}$, where we take the product with respect to the subgroups $\mathbb{Z}_p \subset \mathbb{Q}_p$.

Functional Analysis II

Prof. Marc Burger

D-MATH

- (a) Prove that the multiplication map $\mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}} \to \mathbb{A}_{\mathbb{Q}}$, $(x, y) \mapsto xy$ is continuous.
- (b) Consider the diagonal map $\Delta : \mathbb{Q} \to \mathbb{A}_{\mathbb{Q}}, x \mapsto (x, x)$. Prove that the image of Δ is a discrete, closed subgroup of $\mathbb{A}_{\mathbb{Q}}$.
- (c) Prove that the quotient $\mathbb{A}_{\mathbb{Q}}/\Delta(\mathbb{Q})$ is compact.
- 8. Show that for every $x \in \mathbb{Q}_p$ there exist unique $a_n \in \{0, \ldots, p-1\}$ for $n \ge v_p(x)$ such that

$$x = \sum_{n \geqslant v_p(x)} a_n p^n.$$

9. Using Exercise 8, we define the fractional part of a *p*-adic number $x \in \mathbb{Q}_p$ to be

$$\{x\} := \sum_{0 > n > v_p(x)} a_n p^n \in \mathbb{Q}.$$

where $x = \sum_{n \ge v_p(x)} a_n p^n$. Define the map $\chi \colon \mathbb{A}_{\mathbb{Q}} \to \mathbb{T}$ by

$$\chi(x_{\infty}, x_p) := e^{2\pi i \{x_{\infty}\}} \prod_{p} e^{2\pi i \{x_p\}}.$$

- (a) Prove that χ is a continuous character on $\mathbb{A}_{\mathbb{Q}}$.
- (b) Define the character $\chi_a(x) := \chi(ax)$ for all $a, x \in \mathbb{A}_{\mathbb{Q}}$. Show that the map

$$\mathbb{A}_{\mathbb{Q}} \to \widehat{\mathbb{A}_{\mathbb{Q}}}, \ a \mapsto \chi_a$$

is an isomorphism of topological groups.