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Exercise Sheet 9 - Solutions

1. Let F be a finite abelian group. Prove F̂ ∼= F .

Solution: Let G1, G2 be topological groups. Every character χ : G1 ×G2 → T satisfies

χ(g1, g2) = χ(g1, 1)χ(1, g2)

for all g1, g2 ∈ G. This means we get an isomorphism

Ĝ1 × Ĝ2 → ̂G1 ×G2, (χ1, χ2) 7→ ((g1, g2) 7→ χ1(g1)χ2(g2))

with inverse

̂G1 ×G2 → Ĝ1 × Ĝ2, χ 7→ ((g1 7→ χ(g1, 1)), (g2 7→ χ(1, g2)).

Any finite abelian group can be written as a product of cyclic groups thus we can assume F
cyclic by the first step. In this case, F ∼= F̂ is proven in Example 7.6 (ii).

2. For each a ∈ R, define the additive character χa(t) := e2πiat for t ∈ R. Prove that the map

Ψ: R→ R̂, a 7→ χa

is an isomorphism of topological groups.

Solution: We define
λ · χ(x) := χ(λx)

for all λ ∈ R, χ ∈ R̂ and x ∈ R. This action turns R̂ into a real, topological vector space.
Note that it is complete because it is locally compact. Applying the local compactness again
implies that R̂ is finite-dimensional.

Consider a non-trivial character χ ∈ R̂. Because R is simply-connected, there exists a unique,
continuous logarithm

ψ : R→ R

such that ψ(0) = 0 and e2πiψ(x) = χ(x). For each y ∈ R, note that

f(x) := ψ(x) + ψ(y)

is a continuous logarithm of x 7→ χ(x+ y) with f(0) = ψ(x). This determines f(x) uniquely
and hence

ψ(x+ y) = f(x) = ψ(x) + ψ(y)

for all x ∈ R. Thus ψ is additive and continuous. This implies ψ is R-linear. Hence there is
a ∈ R such that

ψ(x) = ax

1



D-MATH
Prof. Marc Burger

Functional Analysis II FS 2024

for all x ∈ R. Thus Ψ is surjective. Note that Ψ is injective because

χ′
a(0) = 2πia.

The map Ψ is R-linear because

Ψ(ab)(x) = χab(x) = e2πi(ab)x = e2πa(bx) = χa(bx) = (b · χa)(x).

Thus Ψ is an isomorphism of complete vector spaces. The Hahn-Banach theorem implies
that is a homeomorphism.

We give a second proof. Let V be a finite-dimensional R vector space. Then V̂ is a finite-
dimensional R-vector space with the definition

λχ(v) := χ(λv)

for all λ ∈ R and v ∈ V. The Pontryagin duality map D : V → ̂̂
V is R-linear because

D(av)(χ) = χ(av) = (a · χ)(v) = D(v)(a · χ) = (a ·D(v))(χ).

Let R̂ ∼= Rn. The Pontryagin duality theorem implies that we have R-linear isomorphisms

R =
̂̂R ∼= Rn

2

.

Thus n2 = 1 and hence n = 1. Note that Ψ is R-linear because

Ψ(ab)(x) = χab(x) = e2πi(ab)x = e2πia(bx) = χa(bx).

Furthermore, the map is non-zero, so it is an isomorphism.

3. Deduce T̂ ∼= Z from Exercise 2.

Solution: Let H < G be a closed subgroup in a LCA group G. The mapping property of
the quotient G/H says that a continuous group morphism φ : G → T factors continuously
through G/H if and only if H ⊂ ker(φ).

We have T ∼= R/Z, so we get a continuous bijection

T̂→ {χ ∈ R̂ : χ(1) = 1} ∼= Z

where the space on the right is equipped with the subspace topology. The space T̂ is discrete
because T is compact. Thus the above map is an isomorphism of topological groups.

4. Let Fn be a finite abelian group for all n ⩾ 1 and put G :=
∏
i⩾1 Fn with the product

topology. Show that

Ĝ ∼=
⊕
n⩾1

F̂n

as topological groups where the group on the right is equipped with the discrete topology.
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Hint: Prove that there is a neighborhood 1 ∈ V ⊂ T of the identity such that any closed
subgroup H < T with H ⊂ V satisfies H = {1}.
Solution: Let x ∈ T and consider the closed subgroup generated by x in T. If x has finite
order, then this subgroup is finite. Suppose x does not have finite order and let ϵ > 0. By
the pigeonhole principle, there are n,m ∈ Z such that nx−mx = k + ϵ′ for some k ∈ Z and
0 < ϵ′ < ϵ. This implies ϵ′ ∈ T. Therefore, H is dense in T and thus H = T.
Therefore any closed subgroup in T is either finite or T. Define V := {z ∈ T : Re(z) > 0}.
Any closed subgroup H ⊂ V is finite. Moreover, if H is not a trivial subgroup, it has an
element of order ⩾ 5. But this is not possible, because the powers of any element of order
⩾ 5 have an element in each quadrant of the complex plane.

Let χ : G→ T be a continuous character. Then χ−1(V ) is open and non-empty. This implies
that there is a finite subset J ⊂ N with

W := {(xn) ∈ G|∀j ∈ J : xj = 1} ⊂ χ−1(V ).

The subset W is a compact subgroup of G, hence χ(W ) ⊂ V is a closed subgroup. This
implies χ(W ) = 1. Deinfe χj(x) := χ(1, . . . , 1, x, 1, . . .) for all j ∈ J and x ∈ Fj . Then

χ((xn)n) =
∏
j∈J

χj(xj).

This implies that the multiplication map⊕
n⩾1

F̂n → Ĝ

is bijective. Proposition 7.3 says that the group on the right is discrete, so this map is an
isomorphism of topological groups.

Here is a second argument to prove this claim. LetH◁G be a closed subgroup in a topological
group G with finite index. Then

G−H =
⋃

g∈G/H
g/∈H

gH

is a finite union of closed sets. Thus G−H is closed in G which says that H is open.

Consider two distinct elements (xn), (yn) ∈ G. There exists m ⩾ 1 such that xm ̸= ym. The
subset

Z := {(zn) ∈ G : zm = xm}

is compact, has compact complement, and satisfies (xn) ∈ Z and (yn) /∈ Z. In particular,
χ(Z) is clopen. This implies that χ(G) is totally disconnected. Since χ(G) is a closed
subgroup of T, the image is finite (because T is connected the image cannot be T). Define
for each finite set J ⊂ N the set

WJ := {(xn) ∈ G|∀j ∈ J : xj = 1}.
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The WJ form a neighborhood basis for G at 1. Since the image of χ is finite, the kernel is
an open subgroup because it has finite index. Thus there is a finite subset J ⊂ N such that
WJ ⊂ ker(χ). In other words, we get χ(x) = 1 for all x ∈WJ . The same argument as before
proves that the map is an isomorphism.

5. Let χ : Qp → T be the continuous character constructed in the lecture (with ker(χ) = Zp).
For each a ∈ Qp, define χa(t) := χ(at) for each t ∈ Qp. Show that the map

Ψ: Qp → Q̂p, a 7→ χa

is an isomorphism of topological groups.

Hint: Prove that for each character γ ∈ Ĝ there is n ∈ Z such that γ(pnx) = 1 for all x ∈ Zp.
Thus γ̃(x) := γ(pnx) factors through Qp/Zp. Define the subgroups

A−n := {x ∈ Qp/Zp : pnx = 0}

for n ⩾ 1. Determine the group Q̂p/Zp by noting that the diagram

· · · ↪→ A−(n−1) ↪→ A−n ↪→ A−(n+1) ↪→ · · ·

dualizes to
· · ·↞ Â−(n−1) ↞ Â−n ↞ Â−(n+1) ↪→ · · ·

under the Pontryagin dual.

Solution: The group Qp/Zp is discrete, so any character is continuous. Denote by in : A−n →
A−(n+1) the inclusion. Note that we have an isomorphism

A−n → Z/pnZ, a 7→ pna.

Under this isomorphism, we have in(a) = pa. We have another isomorphism

Z/pnZ→ Ẑ/pnZ, a 7→ (t 7→ e2πiat/p
n

).

Under this isomorphism, the dual of in is given by

în(a) = a

i.e. it is the reduction modulo pn map. Since Qp/Zp is the union of the subgroups A−n, the
above isomorphisms compose to

Q̂p/Zp → {(χn) ∈
∏
n⩾1

Â−n : χn+1 ◦ in = χn} = lim←−Z/pnZ = Zp.

Since any character is continuous, this map is a bijection. The composition of this bijection
with a projection is given by

Q̂p/Zp → Â−n, χ 7→ χ|A−n .
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This map is continuous. Thus the above map is a bijection of compact Hausdorff spaces and
hence a homomorphism.

For each x ∈ Zp and χ ∈ Q̂p/Zp define x · χ(a) := χ(xa). Note that the morphism

ψ : Q̂p/Zp → Zp

satisfies
x · ψ(χ) = ψ(x · χ).

Thus for every pair γ1, γ2 ∈ Q̂p/Zp there is x ∈ Zp such that x · γ1 = γ2 or γ1 = x · γ2.

For each x ∈ Qp and χ ∈ Q̂p define x · χ(a) := χ(xa). Let γ ∈ Q̂p. The image of the
restriction γ|Zp

is compact and totally disconnected hence it is finite (see the second proof of
the previous exercise). Thus the kernel of γ|Zp is an open subgroup of Zp. A neighborhood
basis of Zp is given by pnZp for n ⩾ 0, thus there is n ⩾ 0 such that pnZp ⊂ ker(γ). This
implies that pn · γ factors through Qp/Zp.

The above implies that for every pair γ1, γ2 ∈ Q̂p there is x ∈ Qp such that x · γ1 = γ2. The
morphism Ψ is Qp-linear because χa = a · χ for all a ∈ Qp. The space Qp is one-dimensional
and Ψ is a surjection onto a non-zero vector space, so Ψ is a bijection.

Define U := {χ ∈ Q̂p : χ|Zp
= 1}. I claim that this is an open subgroup of Q̂p. The first step

says that for every χ ∈ Q̂p there is n ⩾ 1 such that pn · χ ∈ U. Thus

Q̂p =
⋃
n⩾0

p−nU.

The Baire category theorem implies that U has to contain an open subset V ⊂ U . This
implies that U is an open subgroup because

U =
⋃
u∈U

uV.

We have
Ψ(Zp) = U

because the kernel of χ is Zp. Thus we get

Ψ(pnZp) = pnU.

The subsets pnZp form a neighborhood basis of the identity. Therefore Ψ is open and hence
a homomorphism.

6. Let Kj < Gj be a compact subgroup in a LCH group Gj indexed by j ∈ J . Show that the
restricted product

∏′
j∈J Gj is a locally compact Hausdorff space.

Solution: LetX1, . . . , Xn be locally compact spaces and consider (x1, . . . , xn) ∈ X1×· · ·×Xn.
For each 1 ⩽ i ⩽ n, there is a compact neighborhood xi ∈ Ci ⊂ Xi. Then

x ∈ C1 × . . .× Cn ⊂ X1 × · · · ×Xn
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is a compact neighbourhood of x. Thus X1 × · · ·Xn is locally compact space.

Let (xj) ∈
∏′
j∈J Gj . There exists a finite subset I ⊂ J such that xi ∈ Kj for all j /∈ I. This

implies

x ∈
∏
j∈J

Hj =: U

where Hj = Gj if j ∈ I and Hj = Kj otherwise. By definition, U is an open subset of the
restricted product. Moreover, Tchynoff’s theorem implies that U is a finite product of locally
comapct spaces. Thus the restricted product is LCH.

Consider distinct elements (xj), (yj) ∈
∏′
j∈J Gj . There exists i ∈ J such that xi ̸= yi. Let

U1, U2 ⊂ Gi be two disjoint neighbourhoods of xi and yi respectively. Then the subsets

V1 := {(xj) ∈
∏′

j∈J
Gj : xi ∈ V1}

V2 := {(xj) ∈
∏′

j∈J
Gj : xi ∈ V2}

are disjoint open neighbourhoods of x and y in the restricted product. Thus the restricted
product is Hausdorff.

7. Define the adeles
AQ := R×

∏′

p

Qp

to be the product of R with the restricted restricted product over all primes p ∈ N, where
we take the product with respect to the subgroups Zp ⊂ Qp.

(a) Prove that the multiplication map AQ × AQ → AQ, (x, y) 7→ xy is continuous.

(b) Consider the diagonal map ∆: Q → AQ, x 7→ (x, x). Prove that the image of ∆ is a
discrete, closed subgroup of AQ.

(c) Prove that the quotient AQ/∆(Q) is compact.

Solution:

(a) Consider a set of continuous maps fi : Xi → Yi indexed by i ∈ I and consider the
product of these maps

f :
∏
i∈I

Xi →
∏
i∈I

Yi, f(xi) = (fi(xi)).

We have πi ◦ f(xi) = fi(xi) = fi(πi(x)), so the map f is continuous by the universal
property of the product.

For each finite set of primes S, define

ASQ := {(x∞, xp) ∈ AQ|∀p /∈ S : xp ∈ Zp} = R×
∏
p∈S

Qp ×
∏
p/∈S

Zp.
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The open subsets ASQ×ASQ cover AQ×AQ thus it suffices to prove that the multiplication
map

ASQ × ASQ → ASQ
is continuous. In this case, it can be written as a product of the multiplication maps
and it follows from the first step of the argument.

(b) Consider the open subset

U := {(x∞, xp) ∈ AQ : |x∞| < 1, xp ∈ Zp}.

Let x ∈ U ∩∆(Q) and suppose x ̸= 0. Then x = n/m for co-prime n,m ∈ Z and m > 1.
There is a prime p with p|m. Then |n/m|p = |m|−1

p > 1. This is a contradiction. Thus
U ∩∆(Q) = {0}.
This implies that the set {0} ⊂ ∆(Q) is open. Therefore {x} ⊂ ∆(Q) is open because
we can translate {0} to {x} with a homeomorphism of ∆(Q). Hence ∆(Q) is discrete.

We provide two proofs for the closeness of ∆(Q) inside the adeles. Let x ∈ R and N ⩾ 1.
There exists an open neighborhood x ∈ U ⊂ R such that each y ∈ U ∩Q satisfies either
y = x or y = m/n with m,n co-prime, m ̸= 0, and n ⩾ N . Indeed, consider the set

Z := {m/N : m ∈ Z} ⊂ Q.

For any point x ∈ R there exists an open neighborhood U ⊂ R such that U ∩ Z ⊂ {x}.
The open subset U satisfies the assumptions of the claim.

Consider an adele x = (x∞, xp) ∈ AQ −∆(Q). Let U be an open subset as above with
x = x∞ and N large enough. Define the open subset

V := {(y∞, yp)|y∞ ∈ Ux∞ , yp ∈ xpZp}.

Let y ∈ V ∩∆(Q). There are n,m ∈ Z co-prime with m > N such that y = ∆(n/m).
Let M := max{p : xp /∈ Zp}. Note that all the prime factors p|m satisfy p ⩽M because
xp ∈ Zp for all p > M. Write m =

∏
p⩽M pep , then we have∑

p⩽M

ep log(p) > log(N).

Thus there is a prime q ⩽M such that

eq log(q) >
log(N)

M

and hence

eq >
log(N)

M log(q)
.

Note that M is independent of N , so if we pick N large enough we can ensure

log(N)

M log(p)
> max{vp(xp) : p ⩽M}.
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for all primes p ⩽M . This implies

eq > vq(xq),

which is a contradiction to y ∈ V.
The second proof is based on the following general fact: Let Γ ⊂ G be a subgroup of a
Hausdorff group G such that Γ is discrete with the subspace topology. Then Γ is closed.

Because Γ is discrete, there is an open neighborhood U ⊂ G of the identity such that
U ∩ Γ = {e}. Because G is a topological group, we can find an open neighborhood
of the identity V ⊂ U that V V −1 ⊂ U. Let x ∈ G − Γ and put W := xV. Consider
γ1, γ2 ∈ Γ∩W. Then there are v1, v2 ∈ V such that γ1 = xv1 and γ2 = xv2. This implies

γ2γ
−1
1 = v1v

−1
2 ∈ U ∩ Γ.

Thus γ1 = γ2, hence |W ∩Γ| ⩽ 1. If there exists γ ∈W ∩Γ then the Hausdorff property
implies that there is an open neighborhood W ′ ⊂ G such that x ∈ W ′ and γ /∈ W ′.
Thus W ′ ∩W does not intersect Γ, contains x, and is open.

(c) Consider the subset

W := {(x∞, xp) ∈ AQ : |x∞| ⩽ 1/2, xp ∈ Zp}.

Let y ∈ AQ. I claim that there is a ∈ Q such that y − a ∈ W. Indeed, there is a finite
set of primes S such that yp ∈ Zp for all p /∈ S. If p ∈ S, there are zp, xp ∈ Z such that

yp −
zp
pxp
∈ Zp.

Define r :=
∑
p∈S zp/p

xp , then there is b ∈ Z such that |y − r − b| ⩽ 1/2. Thus

y − r − b ∈W.

This implies that the map
W → AQ/∆(Q)

is a continuous surjection from a compact space. Thus the quotient is compact.

8. Show that for every x ∈ Qp there exist unique an ∈ {0, . . . , p− 1} for n ⩾ vp(x) such that

x =
∑

n⩾vp(x)

anp
n.

Solution: Let n ⩾ 1 and x ∈ Z/pnZ. There exist unique a0, . . . , an−1 ∈ {0, . . . , p − 1} such
that x =

∑p−1
i=0 aip

i. Indeed, consider the map

{0, . . . , p− 1}n → Z/pnZ, (a0, . . . , an−1) 7→
n−1∑
i=0

aip
i.
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To prove the claim is equivalent to proving that this map is bijective. The target and the
source of this map have the same cardinality, so it suffices to prove that the map is injective.
Suppose

p−1∑
i=0

aip
i ≡

n−1∑
i=0

bip
i mod pn

for ai, bi ∈ {0, . . . , p− 1}. Then
n−1∑
i=0

(ai − bi)pi ≡ 0 mod pn.

Suppose there is an index 0 ⩽ i < n with ai − bi ̸= 0. Let 0 ⩽ j < p be the minimal index
with this property. The above equation implies

pj(aj − bj) ≡ 0 mod pj+1

and hence
aj − bj ≡ 0 mod p.

This implies aj − bj = 0. This is a contradiction, hence the map is injective.

Consider x = (xn) ∈ Zp. Write

xn =

n−1∑
i=0

xn,ip
i.

The uniqueness of the power series expansion implies

xn,i = xn+1,i

for all n > i ⩾ 0. Put ai := xi+1,i for each i ⩾ 0, then we get

xn =
∑
i⩾0

aip
i

and hence
x =

∑
i⩾0

aip
i.

The ai are unique because they are unique modulo pi+1.

Let x ∈ Qp. Then p−vp(x)x ∈ Zp admits a unique power series expansion. This implies x
admits a unique power series expansion.

9. Using Exercise 8, we define the fractional part of a p-adic number x ∈ Qp to be

{x} :=
∑

0>n>vp(x)

anp
n ∈ Q.

where x =
∑
n⩾vp(x)

anp
n. Define the map χ : AQ → T by

χ(x∞, xp) := e2πi{x∞}
∏
p

e2πi{xp}.
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(a) Prove that χ is a continuous character on AQ.

(b) Define the character χa(x) := χ(ax) for all a, x ∈ AQ. Show that the map

AQ → ÂQ, a 7→ χa

is an isomorphism of topological groups.

Solution:

(a) Let S be a finite set of primes, then it is sufficient to prove that the restriction of χ to
ASQ is continuous. For each x ∈ ASQ, we get

χ(x∞, xp) = e2πi{x∞}
∏
p∈S

e2πi{xp}

Thus the restriction factors as

ASQ → R×
∏
p∈S

Qp → T×
∏
p∈S

T→ T

where the second map is the ”product” of the local characters x 7→ e2πi{x}. The first map
is continuous because the projections from the adeles to any of the factors is continuous.
The second map is continuous because of the first step in Exercise 6. The last map is
the addition map, so it is continuous because T is a topological group.

(b) Let χ ∈ ÂQ. Define
χp(x) := χ(0, 0, . . . , 0, x, 0, . . .)

for all x ∈ Qp and
χ∞(x) := χ(x, 0, . . .)

for all x ∈ R. These are characters, so Exercise 5 implies that there is αp ∈ Qp with
χp(x) = e2πiαpx and Exercise 2 implies that there is α∞ ∈ R with χ∞(x) = e2πiα∞x.

Consider the restriction

χP :
∏
p

Zp → T, (xp) 7→ χ(0, xp).

This is a continuous character. Note that its image is closed and totally disconnected,
so it is finite. This implies that the kernel is open and therefore there is a finite subset
S of the primes such that

{(xp) ∈
∏
p

Zp|∀p ∈ S : xp = 1} ⊂ ker(χP ).

This implies αp ∈ Zp for all p /∈ S. Thus (α∞, αp) ∈ AQ. This implies that the map is
surjective. Note that χ is uniquely determined by the χp and χ∞. Thus Exercise 2 and
5 imply that the map is bijective.
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Consider the subset U := {χ ∈ ÂQ : χp|Zp = 1}. The argument at the end of exercise 5
implies

ÂQ =
⋃

(np)p∈
∏

p N
np ̸=0 for only finitely many primes p

(∏
p

p−np

)
· U.

The group on the left is locally compact and the union is countable. Thus Baire’s
category theorem implies that U contains an open subset. Since it is a subgroup, it is
an open subset. Consider np ∈ N indexed by the primes such that only finitely many

are non-zero. The set

(∏
p p

−np

)
· U is precisely the image of the open subset

R×
∏
p

p−npZp ⊂ AQ

under the map in the exercise. Since these sets form a neighborhood basis of the identity,
this implies that Ψ is open and hence a homeomorphism.
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