
Differential Geometry#I, FS2024

Last lecture : overview of the course

Beginning :

8- IR

=

D
-

f

· M smooth manifold
,
f : M + R smooth function

· TpM tangent plane

· tangent vectors as derivations :

↑ (f)(p) = A f(x(t)) ,
V(0) =pr() = v

It
o

During the course :

1) additional structure was added to the picture above

(metrics ,
connections

,
curvature tensors

,
... (

2) how does the "abstract" abovementioned structure interact with the

underlying picture ? (volume , completeness, compactness , shape, ...)



1. Metrics A Riemannian manifold is a smooth manifold

endowed with a metric g .

ge N (To
,
2 M) symmetric , positive definite

1gx is a scalar product on TxM varying smoothly in x)

R. in general we imagine objects with the ambient

metric. For example if we put a different metric on the disk

g ---------

G 2 ij

(B, 1303, (x19std)
*
abstract -

saceSI ambient

description

Rmk By Nash's embedding Theorem (1 . 20) every Riemannian
--

manifold can be thought of as sitting in some IRt.

(M
, g) given => 5 F : M + I " s .

t. #
*

9/
= 9

Cembedding ( (isometry(

From the metric we obtain the notion of distance :

8 : [a ,b) -> M
& (p , q) = inf3L(r) = SN'(t)Ignosticat S v(a) = pv(b) = q 3~ piecewise co

(M
, d) is a metric space with the same induced topology (th . 2 .3)



2. Connections M

2

Motivation :

S

t

->&
-(+ W(s , t)) ?
-

-> Tris
,+)
M

How can we take derivatives of objects taking values into

the "moving" planes TVIs
,
+M ?

Notice that these kind of derivatives arise "naturally" for example

when trying to find the shortest red curve in the picture above.

Idea : Vector fields are derivations of functions

connections are derivations of sections.

Definition (3 . 1) Given a vector bundle : E- M on M
, a

connection is a bilinear map covariant

X derivation of section is

V : ↑(TM) x +(E) -> P(E) a section

satisfying Dulfs) = (Vf)s + firs , Vers = fUS .

When E = TM
,
there exists the Levi-Civita connection

,

uniquely determined by the metric and explicitly given by

2 xy ,
z) = X(y

,
z) + y (X

,
z7 - zxX

,
Y> -<X

,
[Y

,
z37 - <Y

,
[X

,z]) + <E
,[Xi1]]

Fozul formula
, (thm3 .7)



Rmk . most useful for computations is the use of Christoffel symbols

↑ e = Te
,
ej

us

come K 1
~ V V-↑PorI L I

Tr(o) M Kurzo M
Consider the following plane distribution Trct)M along some

curve 8
.

A priori we only know TrosM = RW = Tucko) M ,
but thanks to

the connection there are some "distinguished" choices for the isomorphisms.

T

Step 1 : solve Xj e = O

TSeco
- T

Step 2 : TrM => Trlto) M

T
-> et(to)

is an isometry called the parallel transport.

parallel -

sortrans
on the sphere



3. Geodesics

Definition (3
. 19)

Dict) ((t) = 0

# jk + Tjjiji = 0

The motivation is the first variation of length formula

#
Given a family of geodesics Us(t) ,

(it) 1 = 1
,

Lemma 3
.
18

< (s) = <V
,
Uc ! - JivC) ,

"(t) > at

I ↑
V(t) = 2

sUs(t) change related
to variation near change related to
end points the variation "away" from

end points

Rmk .

Given any vector field V along V
,

we can build a U(t)
-

such that V (t) = 55s(t) (Exercise 4 . 1)
"

geodesics have vanishing first variation of length in a

loose at the ends sense
"

&mk .

Given a point and an initial velocity , p ,
t TpM, there

is always a geodesic with these initial conditions (ODE theory)
Al in general the geodesic will not be defined for all times



IR2 /210 ,013

& geodesic not defined for all times

3. 1 .

Local picture , exponential map

One can define a map that to a point p,
a rector JetpM and

a time tassigns the point reached by the Cunique) geodesic

& starting at p with velocity after time + (in unit speed parametrization) .

Of course one can only do this operation for times + that are in

the domain of existence of the solution to the geodesic equation with

the given initial conditions.

This map is called the exponential map and it turns out that

locally it can be used to describe well the manifold M :

exp
: DCTMXIR -> M

I

(10
,
v)

, t) + N(t)
(Def . 4. 2)

I
↑
(1= 1

Rj TpM

(t) = exppy



By Prop 4
. 4 .

expp is a diffrmorphism around 0 :

-By(0)
->

· 0O
- ⑳Lexp(Blanormal coordinates

TpM
geodesic ball
of radius &

↑

↳
~ Rm around p .

In normal coordinates one can "read" the geometry of the mfd :

9) gij(0) = Sij(0) (gij (0) = 0 N (0) = 0 (centering)

2) See later after curvature discussion

The geodesic equation Vjr = 0 has a strong connection to the

first variation of the length (see above) .
As one expects,

geodesics thus have many properties related to length -minimization
.

1) in every geodesic ball B : Any geodesic contained in B

is minimizing (Theorem 4 . 10)
Ec

, competitor (can also escape B)
T

usG-o a ge ① L(8) = L(5)
, L(c)T20geodesic B

2) If a curve has the minimization property ,
then it is a geodesic

((0) =p((1) =q , L(2) - ((8) V joining p and a( => Vjr = o (
3) Clater) If the geodesic has a conjugate point, then it is not

minimizing
,
otherwise it minimizes length among nearby curves.



theorem 4. 12 (Hopf-Rinow)

(M , d) complete exponential defined on entire IM

=> exponential defined on entire TpM for one point I
m

↓ for example Bg(0)

any two points can be connected by a
, geodesic

minimizing !

4. Curvature

In the first semester we saw an intrinsic notion of curvature .

⑭
Gauss-Bonnet :

(k = 2πX(z)
I

this is one example of currature s topology interaction

In differential geometry I we introduced many notions of curvature

both intrinsic and extrinsic .

↑ * does rely on the ambient space
does not
rely on the ambient space 2 "how does my object interact

with

the world it lives in?
"

As an example consider two possible embeddings of
2

in S? For the

extrinsic notions of curvature there is a way to see that the pink

& is "special". From the intrinsic point of view one can apriori

not tell .
S

-·........... gT

S



4)oerview of the currature tensors :

1) Riemann curvature tensor

R(X ,
Y

,
z

,
w) = < R(X

,Y) z ,
Wa

un

Vxyz - Vy0xz- V(x
,
ysz

· very big/complicated tensor hard to use or make assumptions on

· interesting algebraic properties twodimensional planes are the bild,in

2) Sectional curvature (Def . 5 .5)

k(T) =-
4 turns out to be the Gauss currature of the surface one obtains

by applying the exponential map to the plane It

-expp,

/
T

=-Y/ iI M-I

2-d . surface in higher dim Mm
G has some intrinsic Gauss curvature

↳ this is the sectional curvature
of the plane it

Fact : Calgebraic ,
see Lemma 5 . 8) If you know k(it) for all

possible two dimensional planes in TpM ,
then you actually

know the entire Riemann curvature tensor .



In the case of constant sectional curvature o one can write down

explicitly the curvature tensor : (proposition 5 .9)

R = BoR R (x
,
Y

,
z

,
W) = <X

,
W < <Y , z)

- >X
,
E'Y

, Wi

In general ,
the assumption of constant sectional curvature is very

strong and we saw in chapter 7

Theorem 7 . 2 (killing-Hopf)

(M
, g) an m-dim . space form (complete ,

const · sectional curvature

then
(M

, 9) metric IM/4
yk & isometry subgroup

IRM
, M , Hu

An interesting class of manifolds is the one of Cartan-Hadamard mfds

(Ch8) which is defined in terms of negative sectional curvature K =0 .

Theorem 8 .1 (Cartan-Hadamard)
csimply)

(M , g) connected and complete ,
k(p) = 0 NetpM XpEM

,

then expp
: TpM + M is a covering map (differmorphism) .

Interested ? Have a look at the Cartan-Hadamard conjecture !

Roughly speaking one can think of negative sectional curvature

as "same perimeter holds more volume than flat space"



* notion of currature than contains less information than the

entire Riemann currative tensor is the "averaged sectional
curvature" or Ricci curvature :

oNB
Definition 5. 12 Ric (Y

, z) =[Ri , Y ,
z

,
e)

↑

(Ric(Y , Y) = (m-Sm(T) d coer e

Definition 5 .
18 scalar curvature :

x
real valued

scalg = trg Ric

- [ : Ricp(ei ,ei) = mcm-1) fk (it) diT
Tplane

Since these quantities are averages of the previously discussed scalar

curvature
, we expect them to give us less information about the underlying

I Exercise 5
. 1

spaces . In dimension 3
,
thanks to special algebraic properties it turns

out that the Ricci tensor still contains the information about the entire

Riemann currature tensor
. From dimension =4 no longer true

(there exist vicci-flat metrics which are not flat ...

you can google Schwarzschild metric or Calabi conjecture to find out...)

Some nice results related to Ric proven in class :

/dimek to
Gauss

,Theorem 5 . 29 is Ring = fg ,
dim (M)23 => f = cst less rigid

i) k(t) = ist for some point pfM
=> sec = constant .



theorem (Myers 1941) 6 .
15 (M

,g) complete ,
connected

,
7130 s .

+.

Ric(X
,X) = (m - 272/X12

=> diam(M) :

=Sup d(pq

In particular the theorem shows that a lower bound on the Ricci

currative forces compactness. Recall that negative sectional curvature

+ simply conn) implies that the expmap is a differomorphism !

4. 2 Some formula for intuition

in normal coordinates :

gij(x)
= Sij + &Ririj(p) x

*x + 0((xP) "Riemann-metric"

det (gij) = 1 - 1 Ric(p) x
* x + 0((XP)

"Ricci-volume
"

VolBr(p)) = Wmrm (1 - Scar + OcR

Length (Cr) = 2 t - 1 k(Mp(r3 + O(ri)
&

image of 51Tp
under exponential map

If there is time
, extrinic curvature



5. Jacobi fields
, conjugate points, geodesics

Jacobi fields are special kinds of vector fields along geodesics & .

They are the ones that infinitesionally describe families of geodesics

close to U.

-asfield1- & M
-->

>
->

*

I--Y

Sacobinig
field : (t)

Equivalently , given a geodesic U a Jacobi field VCt) - TvcM is a

solution to the Jacobi equation (Lemma 6 . 1)

V" + RIV
,
U'JU = 0. =RMR . Ut is

also a Jacobi field

In the case of constant sectional curvature one can explicity write solutions

in terms of parallel frames along & (see Example 6
. 4) as well as to

understand currature in terms of geodesic behaviour.

Here we emphasize the relation to conjugate points and geodesics :

Definition 6 . 5 . Let N be a geodesic , v(0) =

p , W(t) = g ·
Then a is

conjugate to p along N if there exist a Jacobi field JO,

2) (0) = 0 , ((to) = 0 along W
.

~Mq conjugatee

s



Evampli nei

Remark : having a Jacobi field with ((p) = ((q) = 0
,
does not

necessarily implies that it comes from a variation of geodesics
that fixed the points N(p) and U, (q) like in the example
above !

variations

1
of -

-u
/ geodesic

222 ~e =
y(17 i

6

=

u(1)
vo

g

q -(0)
g qz s-

w
I

D

~
a

↑& I
TedAssocia in some special

Jacobi field cases the associated
vanishes at 0

s
1 Jacobi field can still

always vanish at 0 and/or 1 .

Lemma 6 .7 : U/to) conjugate to UCt) E & exp : ThCTpM) -Noc
not injective.

Exercise 0 .
1 : if U has a conjugate point and c is another geodesic

which remains close to N at any time ,
then I must also have a

conjugate point.



Finally
,

let us recall the relationship between conjugate points and

length minimizing properties of geodesics :

Theorem 6
.
0 Assume & is a geodesic with no conjugate points .

Then
, among curves with the same end points that are in a

neighborhood of U ,
N has minimal length :

LIV) = L(0)

hborhood

property holds.Di
minimie se

with no

conjugate points

which can be

Shorter butmust

escape neighborhood

Theorem 6
. 12 Let to - (0

,
e) be a conjugate point for N : [0 ,e

+ M.

Then G is not the shortest curve from N(0) to &(e).

# careful - the conjugate point is a bit before the point where minimality

fails in general . Indeed there are examples where to is a

conjugate point for N and there is a unque geodesic from

N(0) to UCAG (which is N) .


