1. Riemannian metrics, isometries, Lie derivatives

1.1. Equivalence of definitions of a surface.

Let $\Sigma \subset \mathbb{R}^3$ be a smooth surface. Show that for all $p \in \Sigma$ there exists an open neighborhood $U \subset \mathbb{R}^3$ of p so that $\Sigma \cap U$ is the graph of a smooth function $F: V \subset \mathbb{R}^2 \to \mathbb{R}$, i.e. $\Sigma \cap U = \{(x^1, x^2, F(x^1, x^2))\}$ or $\{(x^1, F(x^1, x^3), x^3)\}$ or $\{(F(x^2, x^3), x^2, x^3)\}$.

1.2. Lie derivative.

Let M be a smooth manifold.

- 1. Let $D: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$ be a derivation, i.e. D is \mathbb{R} -linear and satisfies D(fg) = fD(g) + gD(f) for all $f, g \in \mathcal{C}^{\infty}(M)$. Show that there exists a unique vector field $V \in \Gamma(TM)$ so that D(f) = Vf for all $f \in \mathcal{C}^{\infty}(M)$.
- 2. Let $V, W \in \Gamma(TM)$. Show that $[V, W] \in \Gamma(TM)$ where $[V, W]: f \mapsto VWf WVf$. Express V in a local chart (φ, U) as $V = V^i \partial_{\varphi^i}$ where $V^i \in \mathcal{C}^{\infty}(\varphi(U))$, similarly $W = W^j \partial_{\varphi^j}$. Is [V, W] tensorial in V, i.e. $\mathcal{C}^{\infty}(M)$ -linear in V?

1.3. Existence of Riemannian metrics.

Let M be a smooth manifold. Show that there exists a Riemannian metric g on M. *Hint.* Use a partition of unity. Carefully check that your construction yields something positive definite!

1.4. Isometries.

1. Show that the map

$$\left((0,\infty)\times(0,2\pi),\mathrm{d}r^2+r^2\,\mathrm{d}\phi^2\right)\ni(r,\phi)\stackrel{F}{\mapsto}(r\cos\phi,r\sin\phi)\in\left(\mathbb{R}^2,(\mathrm{d}x^1)^2+(\mathrm{d}x^2)^2\right)$$

is a local isometry.

2. Show that Möbius transformations $z \stackrel{A}{\mapsto} \frac{az+b}{cz+d}$, $a, b, c, d \in \mathbb{R}$, ad-bc = 1, are isometries of (\mathbb{H}^2, g) where we define $\mathbb{H}^2 := \{z \in \mathbb{C} : \Im z > 0\}$ and $g_{x+iy} = y^{-2}(dx^2 + dy^2)$. Show that (\mathbb{H}^2, g) is homogeneous and isotropic.