10. Hadamard manifolds

10.1. Geodesics in Hadamard manifolds.

Let γ be an isometry of a Hadamard manifold (M, g). Show that $Min(\gamma)$ is closed, geodesically convex (i.e. if $\gamma : [0, 1] \to Min(\gamma)$ is a geodesic with $\gamma(0), \gamma(1) \in Min(\gamma)$, then also $\gamma(t) \in Min(\gamma)$ for all $t \in [0, 1]$), and γ -invariant.

10.2. "Uniqueness" and symmetries of hyperbolic space.

Prove that if M is a n-dimensional Riemannian manifold satisfying properties

- 1. for any given point all geodesic rays x(t), $t \ge 0$ emanating from it are minimizing up to arbitrarily large values of t > 0 (note that this is stronger than geodesic completeness).
- 2. the sectional curvatures are constantly equal to -1,

and $p \in M$ then \exp_p induces an isometry between \mathbb{R}^n with metric

$$g(w,w) = \left(w \cdot \frac{x}{|x|}\right)^2 + \left(|w|^2 - \left(w \cdot \frac{x}{|x|}\right)^2\right) \frac{\sinh^2|x|}{|x|^2}$$
(1)

and M. Deduce that given any two points p, q in the hyperbolic space \mathbb{H} and any isometry H between their tangent spaces $T\mathbb{H}_p \to T\mathbb{H}_q$ there is a unique isometry $f: \mathbb{H} \to \mathbb{H}$ such that f(p) = q and $df_p = H$.

10.3. Two dimensional Hadamard manifolds.

Let (M, g) be a two dimensional Hadamard manifold. For fixed point $p \in M$ and isometry $H : \mathbb{R}^2 \to TM_p$, consider $(\mathbb{R}^2, \overline{g})$ where $\overline{g} := (\exp_p \circ H)^* g$.

1. Show that \overline{g} is of the form

$$\overline{g}_x(v,w) := \left(v \cdot \frac{x}{|x|}\right) \left(w \cdot \frac{x}{|x|}\right) + \frac{f^2(x)}{|x|^2} \left(v \cdot w - \left(v \cdot \frac{x}{|x|}\right) \left(w \cdot \frac{x}{|x|}\right)\right),\tag{2}$$

where $f^2(x)/|x|^2$ is smooth (also at x = 0) and has limit 1 as $x \to 0$, and where $t \mapsto f(tx)$ is nonnegative and convex for any fixed $x \in \mathbb{R}^2 \setminus \{0\}$.

2. Reciprocally, show that \mathbb{R}^2 endowed with any metric \overline{g} satisfying the properties established in 1. —and such that $g_x(v, w)$ extends to a smooth metric across x = 0—gives a model of a Hadamard manifold (simply connected with nonpositive sectional curvature at all points).

10.4. Asymptotic expansion of the circumference.

Let M be a manifold, $E \subset TM_p$ a linear 2-plane and $\gamma_r \subset E$ a circle with center 0 and radius r > 0 sufficiently small. Show that

$$L(\exp(\gamma_r)) = 2\pi \left(r - \frac{\sec(E)}{6}r^3 + \mathcal{O}(r^4)\right)$$

for $r \to 0$.