10. Hadamard manifolds

10.1. Geodesics in Hadamard manifolds.

Let γ be an isometry of a Hadamard manifold (M, g). Show that $\operatorname{Min}(\gamma)$ is closed, geodesically convex (i.e. if $\gamma:[0,1] \rightarrow \operatorname{Min}(\gamma)$ is a geodesic with $\gamma(0), \gamma(1) \in \operatorname{Min}(\gamma)$, then also $\gamma(t) \in \operatorname{Min}(\gamma)$ for all $t \in[0,1])$, and γ-invariant.

10.2. "Uniqueness" and symmetries of hyperbolic space.

Prove that if M is a n-dimensional Riemannian manifold satisfying properties

1. for any given point all geodesic rays $x(t), t \geq 0$ emanating from it are minimizing up to arbitrarily large values of $t>0$ (note that this is stronger than geodesic completeness).
2. the sectional curvatures are constantly equal to -1 ,
and $p \in M$ then $\exp _{p}$ induces an isometry between \mathbb{R}^{n} with metric

$$
\begin{equation*}
g(w, w)=\left(w \cdot \frac{x}{|x|}\right)^{2}+\left(|w|^{2}-\left(w \cdot \frac{x}{|x|}\right)^{2}\right) \frac{\sinh ^{2}|x|}{|x|^{2}} \tag{1}
\end{equation*}
$$

and M. Deduce that given any two points p, q in the hyperbolic space \mathbb{H} and any isometry H between their tangent spaces $T \mathbb{H}_{p} \rightarrow T \mathbb{H}_{q}$ there is a unique isometry $f: \mathbb{H} \rightarrow \mathbb{H}$ such that $f(p)=q$ and $d f_{p}=H$.

10.3. Two dimensional Hadamard manifolds.

Let (M, g) be a two dimensional Hadamard manifold. For fixed point $p \in M$ and isometry $H: \mathbb{R}^{2} \rightarrow T M_{p}$, consider $\left(\mathbb{R}^{2}, \bar{g}\right)$ where $\bar{g}:=\left(\exp _{p} \circ H\right)^{*} g$.

1. Show that \bar{g} is of the form

$$
\begin{equation*}
\bar{g}_{x}(v, w):=\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)+\frac{f^{2}(x)}{|x|^{2}}\left(v \cdot w-\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)\right) \tag{2}
\end{equation*}
$$

where $f^{2}(x) /|x|^{2}$ is smooth (also at $x=0$) and has limit 1 as $x \rightarrow 0$, and where $t \mapsto f(t x)$ is nonnegative and convex for any fixed $x \in \mathbb{R}^{2} \backslash\{0\}$.
2. Reciprocally, show that \mathbb{R}^{2} endowed with any metric \bar{g} satisfying the properties established in 1. -and such that $g_{x}(v, w)$ extends to a smooth metric across $x=0$ gives a model of a Hadamard manifold (simply connected with nonpositive sectional curvature at all points).
10.4. Asymptotic expansion of the circumference.

Let M be a manifold, $E \subset T M_{p}$ a linear 2-plane and $\gamma_{r} \subset E$ a circle with center 0 and radius $r>0$ sufficiently small. Show that

$$
L\left(\exp \left(\gamma_{r}\right)\right)=2 \pi\left(r-\frac{\sec (E)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)\right)
$$

for $r \rightarrow 0$.

