11. Differential forms, part one

This sheet contains the first exercises involving differential forms. You can solve the exercises using material covered before chapter 9.3 in the lecture notes.

11.1. Characterization of orientability.

Let M be a smooth m-dimensional manifold. Show that M is orientable if and only if there exists a nowhere vanishing m-form on M.

11.2. Properties of the wedge product.

Prove the following two statements (see Remark 9.3 in the lecture notes): given $\omega \in \Lambda^k V^*$, $\eta \in \Lambda^l V^*$,

- 1. $(\omega \wedge \eta) \wedge \rho = \omega \wedge (\eta \wedge \rho)$
- 2. $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$.

11.3. Example of pull-back.

Let $\omega \in \Omega^1(\mathbb{R}^2 \setminus \{0, 0\})$ be the 1-form given by

$$\omega=-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy,$$

and let f be the map $f(r, \theta) = (r \cos(\theta), r \sin(\theta))$ defined on $\mathbb{R}^2 \setminus (-\infty, 0]$. Compute $f^* \omega$.

11.4. Invariant *n*-forms on Lie groups.

Prove that the space of left (or right) invariant *n*-forms on a Lie group (G, g) of dimension n is a one dimensional vector space.