2. Length and volume, Levi-Civita connection, vector fields

2.1. Parametrizations, lengths and volumes.

As discussed in the lectures, for a smooth curve $\gamma:[a, b] \rightarrow M$, into a Riemannian manifold (M, g), one defines its length by

$$
L(\gamma)=\int_{a}^{b} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)^{1 / 2} d t
$$

We also define its energy

$$
E(\gamma)=\int_{a}^{b} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t
$$

1. Prove that $L(\gamma)$ is independent of the parametrization: for any diffeomorphism $\psi:[c, d] \rightarrow[a, b], L(\gamma \circ \psi)=L(\gamma)$.
2. Prove that in general $E(\gamma \circ \psi) \neq E(\gamma)$. Give sufficient conditions on ψ, such that equality holds.
3. Let \mathcal{A} be the family of diffeomorphisms between $[a, b]$ and $[c, d]$ for arbitrary $c \neq d$. Prove that

$$
\sup _{\psi \in \mathcal{A}} E(\gamma \circ \psi)=\infty, \quad \inf _{\psi \in \mathcal{A}} E(\gamma \circ \psi)=0
$$

4. Bonus question, to be discussed later: what happens if the length of $[c, d]$ is prescribed?

2.2. Connections.

Let M be an m-dimensional smooth manifold. Suppose for all $V, W \in \Gamma(T M)$ we are given $D_{V} W$ with the following properties for all $f \in \mathcal{C}^{\infty}(M), V, W \in \Gamma(T M)$:

$$
\begin{gathered}
D_{f V} W=f D_{V} W, \quad D_{V}(f W)=(V f) W+f D_{V} W \\
D_{V_{1}+V_{2}} W=D_{V_{1}} W+D_{V_{2}} W \quad D_{V}\left(W_{1}+W_{2}\right)=D_{V} W_{1}+D_{V} W_{2}
\end{gathered}
$$

One calls D a connection.

1. Show that in local coordinates $x=\left(x^{1}, \ldots, x^{m}\right)$ on M there exist smooth functions $\Gamma_{i j}^{k}$ (called connection coefficients, $i, j, k=1, \ldots, m$, so that $D_{V} W=$ $V^{i}\left(\partial_{x^{i}} W^{j}\right) \partial_{x^{j}}+V^{i} W^{j} \Gamma_{i j}^{k} \partial_{x^{k}}$.
2. Show, conversely, that this formula defines a map (in the local coordinate chart) satisfying the properties above.
3. Show that D is torsion-free, meaning $D_{V} W-D_{W} V=[V, W]$ for all $V, W \in \Gamma(T M)$, if and only if $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
4. Show that there exists a connection D.
5. Fix a connection D_{0}. Prove that $\left\{D-D_{0}: D\right.$ is a connection $\} \cong \Gamma\left(T_{1,2} M\right)$ via $D \mapsto\left((V, W) \mapsto D_{V} W-\left(D_{0}\right)_{V} W\right)$. Thus, the space of connections is an infinitedimensional affine space modelled on $\Gamma\left(T_{1,2} M\right)$.
6. State (and prove) an analogous result for connections on a vector bundle $E \rightarrow M$.

2.3. Levi-Civita connection of immersed submanifold.

1. Let (\bar{M}, \bar{g}) be a Riemannian manifold with Levi-Civita connection \bar{D}, and let M be a submanifold of \bar{M}, equipped with the induced metric $g:=i^{*} \bar{g}$, where $i: M \rightarrow \bar{M}$ is the inclusion map. Show that the Levi-Civita connection D of (M, g) satisfies $D_{X} Y=\left(\bar{D}_{X} Y\right)^{T}$ for all $X, Y \in \Gamma(T M)$, where the superscript T denotes the component tangential to M and $\bar{D}_{X} Y$ is defined as $\bar{D}_{X} Y:=\bar{D}_{\bar{X}} \bar{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T M)$ of X, Y.
2. Let (M, g) be a smooth manifold with Levi-Civita connection D. Consider the metric $\tilde{g}=\varphi g$ for a positive smooth function $\varphi: M \rightarrow \mathbb{R}_{>0}$. Compute the Levi-Civita connection of (M, \tilde{g}). What happens for $\varphi \equiv c>0$? How do you explain it?
Hint: By problem 2.2. any two connections differ by a tensor, try to compute that tensor to obtain the result.

2.4. Pullbacks.

Let N be a smooth manifold, and let (M, g) be a Riemannian manifold. Let $F: N \rightarrow M$ be a smooth map.

1. Let $V: N \rightarrow T M$ be a vector field along F. Let $p \in N$. Show that there exist a neighborhood $U \subset N$ of p, smooth vector fields $V_{1}, \ldots, V_{m} \in \Gamma(T M)$, and smooth functions $f^{1}, \ldots, f^{m} \in \mathcal{C}^{\infty}(N)$ so that $V=f^{i} F^{*}\left(V_{i}\right)$ on U. (Here $F^{*}\left(V_{i}\right): N \rightarrow T M$ is the vector field $N \ni q \mapsto V(F(q)) \in T_{F(q)} M$ along F.)
2. Let $V, W: N \rightarrow T M$ be vector fields along F and $Z \in \Gamma(T N)$. Write $\langle V, W\rangle(p)=$ $g_{F(p)}\left(V_{p}, W_{p}\right)$. Show that $Z\langle V, W\rangle=\left\langle\nabla_{Z} V, W\right\rangle+\left\langle V, \nabla_{Z} W\right\rangle$.
Hint. Show this first in the case that V, W are pullbacks along F of smooth vector fields on M. Conclude in the general case using the first part.
