3. Affine connections and geodesics

3.1. Connection along integral curves of vector fields.

Let X and Y be smooth vector fields on M, i.e. $X, Y \in \Gamma(T M)$. Let ∇ denote the Levi-Civita connection of (M, g). Let $p \in M$ and $\gamma:[0,1] \rightarrow M$ the integral curve of X through p. Recall that by definition, the integral curve γ satisfies the initial value problem

$$
\left\{\begin{array}{l}
\gamma(0)=p \tag{1}\\
\frac{\partial \gamma}{\partial t}=X(\gamma(t))
\end{array}\right.
$$

Prove that ∇ is given by

$$
\begin{equation*}
\nabla_{X} Y(p)=\frac{d}{d t}\left(\left.P_{\gamma, 0, t}^{-1}(Y(c(t)))\right|_{t=0}\right. \tag{2}
\end{equation*}
$$

where $P_{\gamma, 0, t}: T_{\gamma(0)} M \rightarrow T_{\gamma(t)} M$ is the parallel transport along γ from 0 to t.
Hint: prove that you can extend a basis e_{1}, \ldots, e_{m} of $T_{p} M$ to a local frame $e_{1}(t), \ldots, e_{m}(t) \in$ $T_{\gamma(t)} M$ along γ such that $e_{i}(t)$ is parallel. Consider the restriction of Y on $\gamma([0,1])$ expressed using the parallel frame.

3.2. Connection is determined by geodesics and torsion tensor.

Let ∇ and $\tilde{\nabla}$ be two connections on $T M$. We call a curve $\gamma:[0,1] \rightarrow M$ a geodesic if it is self-parallel, that is $\nabla_{\partial_{t}} \gamma^{\prime}=0$ (see Definition 3.18 in the lecture notes). Prove that the following two are equivalent:

1. $\nabla \equiv \tilde{\nabla}$, the two connections are identical
2. ∇ and $\tilde{\nabla}$ have the same geodesics and the same torsion fields $T_{\nabla} \equiv T_{\tilde{\nabla}}$.

Hint: by Definition 3.5, $T_{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ and $T_{\nabla}(X, Y)=-T_{\nabla}(Y, X)$. By exercise 2.5, the difference of two connections satisfies $A=\nabla-\tilde{\nabla} \in \Gamma\left(T_{1,2} M\right)$. Decompose A in its symmetric A^{s} and anti-symmetric A^{a} part and try to understand what the conditions in 2 . mean for A^{a} and A^{s} respectively.

3.3. Parallel transport on the 2 -sphere.

Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere endowed with the Levi-Civita connection on $T S^{2}$. Let $\gamma:[0,1] \rightarrow S^{2}$ be a smooth curve.

1. Prove that parallel transport is independent of reparametrization: if V is a parallel vector field along γ, then for any diffeomorphism between intervals (reparametrization) $\alpha:[a, b] \rightarrow[0,1], V \circ \alpha$ is a vector field along $\gamma \circ \alpha$ and it is parallel. (For this part of the exercise, $M=S^{2}$ is not needed, and does not simplify the proof, the connection can be chosen to be arbitrary).
2. Prove that a vector field V along γ is parallel if and only if $\partial_{t} V(t) \in \mathbb{R}^{3}$ is orthogonal to the sphere. Hint: use a parallel frame along γ (see also the hint to Problem 3.1) and the compatibility of the metric applied to sections of constant length.
3. What is the parallel transport along geodesics on S^{2} ? (By symmetry, it suffices to choose a geodesic in a convenient system of coordinates)
4. What is the parallel transport along curves that parametrize $S^{2} \cap\{z=c\}$ for $c \in(-1,1)$?

3.4. Parallel transport and geodesics on hyperbolic plane.

Recall the hyperbolic plane introduced in exercise 1.4:

$$
\mathbb{H}^{2}:=\{z \in \mathbb{C}: \Im z>0\} \quad \text { and } \quad g_{x+i y}=y^{-2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right) .
$$

1. Compute the Christoffel symbols of the Levi-Civita connection of $\left(\mathbb{H}^{2}, g\right)$.
2. Let $v=(0,1)$ be a tangent vector at $p=(0,1) \in \mathbb{H}^{2}$. (This means that under the canonical identification of $T_{p} \mathbb{H}^{2}$ with \mathbb{R}^{2}, the vector v_{0} is identified with $(0,1)$.) Let $v(t)$ be the parallel transport of v along the curve $\gamma(t)=(t, 1)$. Show that $v(t)$ makes an angle t with the direction of the y-axis.
3. Show that vertical lines are geodesics in $\left(\mathbb{H}^{2}, g\right)$. Show that any geodesic is either a vertical half line or a half circle intersecting the x-axis orthogonally.

Hint for 2: In the proof of 3.14 you saw the defining ODE for parallel transport in local coordinates. In this case, writing $v(t)=(w(t), z(t))$, deduce that the parallel transport system simplifies to

$$
\left\{\begin{array}{l}
\dot{w}(t)+\Gamma_{12}^{1}(\pi(v(t))) z=0 \tag{3}\\
\dot{z}(t)+\Gamma_{11}^{2}(\pi(v(t))) w=0
\end{array}\right.
$$

Since parallel transport is an isometry, parametrize the curve $v(t)$ in $T \mathbb{H}^{2}$ using just one parameter $\theta(t), v(t)=(\cos (\theta(t)), \sin (\theta(t)))$.

