4. Geodesics, Hopf-Rinow theorem

4.1. Geodesic variations.

1. Let $\gamma : [0,1] \to M$ be a smooth curve in a Riemannian manifold (M,g). Let V be a vector field along γ with V(0) = V(1) = 0. Show that there exists

$$\tilde{\gamma}:(-1,1)\times[0,1]\to M$$

satisfying $\tilde{\gamma}(0,t) = \gamma(t)$, $\tilde{\gamma}(0,s) = \gamma(0)$, $\tilde{\gamma}(1,s) = \gamma(1)$ and such that V is the variation vector field of $\tilde{\gamma}$, i.e. $V(t) = \partial_s \tilde{\gamma}(s,t)$.

2. Let $\gamma : [0,1] \times [0,a] \to M$ be a smooth map such that for fixed $a_0 \in [0,a]$, $\gamma_{a_0} : t \mapsto \gamma(t,a_0)$ is a geodesic parametrized by arc length. Assume that the curve $b \mapsto \gamma(0,b)$ is orthogonal to the curve γ_{a_0} at the point $\gamma(0,a_0)$. Prove that for all $(t_0,a_0) \in [0,1] \times [0,a]$ the curves $b \mapsto \gamma(t_0,b)$ and γ_{a_0} are orthogonal where they intersect.

4.2. Exponential map on SO(n).

Consider $M = SO(n) \subset \mathbb{R}^{n \times n}$ with the induced metric. Consider $p = I \in SO(n)$, show that

- 1. $T_p M = \{ B \in \mathbb{R}^{n \times n} | B + B^T = 0 \}$
- 2. $\exp_p(B) = \sum_{i=0}^{\infty} \frac{1}{i!} B^i$ (matrix exponential).

4.3. Riemannian structure on TTM.

Let $(p, v) \in TM$ and $V, W \in T_{(p,v)}TM$. Choose curves in TM with

$$\alpha: t \mapsto (p(t), v(t)) \quad \beta: s \mapsto (q(s), w(s)),$$

$$p(0) = q(0) = p$$
 $v(0) = w(0) = v$ $\alpha'(0) = V$ $\beta'(0) = W.$

Define an inner product on TM by

$$g_{(p,v)}(V,W) = g_p^M(d\pi(V), d\pi(W)) + g_p^M(\nabla_{\partial_t}^M v(0), \nabla_{\partial_t}^M w(0)).$$

1. Prove that this formula defines a well-defined Riemannian metric on TM.

- 2. A vector $(p, v) \in TM$ that is orthogonal to the vectors tangent to the fiber $\pi^{-1}(p) \cong T_p M$ is called a <u>hotizontal vector</u>. A curve $\gamma : t \mapsto (p(t), v(t)) \in TM$ is defined to be horizontal if its tangent vector $\gamma'(t) \in T_{\gamma(t)}TM$ is horizontal for all t. Prove that the curve $\gamma(t)$ is horizontal if and only if v(t) is parallel along p(t) with respect to the Riemannian structure and Levi-Civita connection of M.
- 3. Prove that the geodesic vector field on TTM (see also proof of 4.1) is horizontal at every point.
- 4. Prove that the flow lines of the geodesic vector field are geodesics on TM for the metric introduced in 1.

4.4. Applications of Hopf-Rinow.

Let (M, g) be a <u>homogeneous Riemannian manifold</u>, i.e. the isometry group of M acts transitively on M. Prove that for any two points $p, q \in M$ there exists a geodesic γ between them satisfying $L(\gamma) = d(p, q)$.

4.5. Existence of closed geodesics.

Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one and it is a geodesic.

- a) Show that c_0 is homotopic to a piece-wise C^1 -curve c_1 with finite length.
- b) Let $L := \inf_c L(c)$ be the infimum over all piece-wise C^1 curves $c \colon S^1 \to M$ homotopic to c_0 and consider a minimizing sequence $(c_n \colon S^1 \to M)_n$ with $\lim_n L(c_n) = L$. Use compactness of M to construct a piece-wise C^1 -curve $c \colon S^1 \to M$ with length L. *Hint.* Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.
- c) Conclude by showing that c is homotopic to c_0 and a geodesic.