5. Curvature

5.1. Ricci curvature.

Let (M, g) be a 3-dimensional Riemannian manifold. Show the following:

- 1. The Ricci curvature Ric uniquely determines the Riemannian curvature tensor R.
- 2. If M is an Einstein manifold, that is, a Riemannian manifold (M, g) with Ric = kg for some $k \in \mathbb{R}$, then the sectional curvature sec is constant.

5.2. Metric and Riemannian isometries.

Let (M, g) and $(\overline{M}, \overline{g})$ be two connected Riemannian manifolds with induced distance functions d and \overline{d} , respectively. Further, let $f: (M, d) \to (\overline{M}, \overline{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p' \in M$ we have $\overline{d}(f(p), f(p')) = d(p, p')$.

- 1. Prove that for every geodesic γ in M, $\bar{\gamma} := f \circ \gamma$ is a geodesic in N.
- 2. Let $p \in M$. Define $F: TM_p \to T\overline{M}_{f(p)}$ with

$$F(X) := \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(t),$$

where γ_X is the geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}(0) = X$. Show that F is surjective and satisfies F(cX) = cF(X) for all $X \in TM_p$ and $c \in \mathbb{R}$.

- 3. Conclude that F is an isometry by proving ||F(X)|| = ||X||.
- 4. Prove that F is linear and conclude that f is smooth in a neighborhood of p.
- 5. Prove that f is a diffeomorphism for which $f^*\bar{g} = g$ holds.

5.3. Flat manifolds.

Consider the torus $\mathbb{T}^m = S^1 \times ... \times S^1$ endowed with the product metric coming from *m*-times the standard metric on S^1 .

- 1. Express the metric g in local coordinates.
- 2. Show that this metric on the torus (\mathbb{T}^m, g) defines a <u>flat manifold</u> (a manifold for which $K(\Pi) = 0$ for every plane $\Pi \subset T_p M$ and every $p \in M$).
- 3. Decide whether this statement is true or false: "A smooth Riemannian manifold is flat if and only if the Riemann curvature tensor vanishes identically."

5.4. Curvatures of spheres.

Let $S_r^m \subset \mathbb{R}^{m+1}$ be the *m*-dimensional sphere of radius r endowed with the standard metric.

- 1. Compute the Riemann curvature tensor of S_r^m .
- 2. Compute the Ricci curvature tensor of S_r^m .
- 3. Compute the scalar curvature of S_r^m .