6. Curvature of submanifolds, Lie groups

6.1. Liouville's theorem.

Let X be the geodesic vector field on TM.

- 1. Prove that $\operatorname{div}(G) = 0$.
- 2. Prove that the geodesic flow preserves the volume of TM.

6.2. Totally geodesic submanifolds.

Prove the following proposition.

For a submanifold $M \subset \tilde{M}$ the following four statements are equivalent:

- 1. vanishing second fundamental form, i.e. $\kappa(X, Y) = 0$ for all $X, Y \in TM$
- 2. every geodesic in M is also a geodesic in \tilde{M}
- 3. if $v \in T_p M$ then the unique geodesic $\tilde{\gamma}$ of \tilde{M} with initial velocity v lies initially in M
- 4. if $c: I \to M$ is a curve, then every ∇ -parallel vector field $Y \in \Gamma(c^*(TM))$ is also $\tilde{\nabla}$ parallel.

6.3. Pull-back connections and curvature.

1. Prove the following Proposition.

Let R be the curvature tensor of a connection ∇ on TM. For another manifold N and a smooth map $F : N \to M$, let R^F denote the curvature tensor of the connection ∇^F along F, given by

$$R^{F}(X,Y)W := \nabla_{X}^{F}\nabla_{Y}^{F}W - \nabla_{Y}^{F}\nabla_{X}^{F}W - \nabla_{[X,Y]}^{F}W \in \Gamma(F^{*}TM)$$

for $X, Y \in \Gamma(TN)$ and $W \in \Gamma(F^*TM)$). Then

$$(R^F(X,Y)W)_p = R(F_*X_p.F_*Y_p)W_p$$

for all $p \in N$.

<u>Remark</u>: the notation for the pull-back connection along a curve c used in the lectures is ∇_{∂_s} (∇^c in the notation of the proposition).

2. If $F: (-1,1)_s \times (0,1)_t \to M$ is a smooth map, then $[D/ds, D/dt]V = R(V, \gamma')V$ for $V(t) = \partial_s F(0,t), \ \gamma'(t) = \partial_t F(0,t).$

6.4. Lie groups.

<u>Definition</u>: A <u>Lie group</u> G is a smooth manifold G which has a smooth group structure (m and i are smooth maps between smooth manifolds)

$$m: G \times G \to G$$
 $m(p,q) = pq$
 $i: G \to G$ $i(p) = p^{-1}$.

For any $p \in G$, the left-multiplication $L_p: G \to G$ defined by $L_p(q) = pq$ is a diffeomorphism. A Riemannian metric g on G is called <u>left-invariant</u> if $g(v, w) = g(dL_p(v), dL_p(w))$ for all $v, w \in TG$ and $p \in G$. One defines right-multiplication and right invariance analogously. A metric is called <u>bi-invariant</u> if it is both right- and left-invariant.

The Lie algebra $T_eG =: \mathcal{G}$ can therefore be identified with the set of left-invariant vector fields on G.

- 1. Let $X \in \mathcal{G}$ be a left-invariant vector field. Prove that the flow ϕ_t of X is defined globally for all times t and that the flow lines $\gamma : \mathbb{R} \to G$ with $\gamma(0) = e$ satisfy $\gamma(t+s) = \gamma_t \cdot \gamma_s(a)$. <u>Remark:</u> a map $\gamma : \mathbb{R} \to G$ is called a <u>1-parameter subgroup of G if it satisfies $\gamma(t+s) = \gamma(t) \cdot \gamma(s)$.</u>
- 2. Prove that if G has a bi-invariant metric g, then the geodesics starting at e are 1-parameter subgroups of G.

Let G be a Lie group with bi-invariant metric g. Let $X, Y, Z \in \Gamma(TG)$ be left-invariant vector fields.

- 3. Show that $\nabla_X Y = \frac{1}{2}[X, Y]$. <u>Hint:</u> show that $\nabla_X X = 0$ for left invariant vector fields.
- 4. Prove using (3.) that $R(X, Y)Z = \frac{1}{4}[[X, Y], Z].$
- 5. Prove that if X and Y are orthonormal, the sectional curvature of the plane Π generated by X and Y is given by $K(\Pi) = \frac{1}{4}g([X, Y], [X, Y])$. Conclude that if the flows of X and Y commute, the planes Π have vanishing sectional curvature. <u>Remark:</u> this shows that the sectional curvature of a Lie group with bi-invariant metric is non-negative.