7. Curvature, conjugate points

7.1. Codazzi equation.

Let $M \subset \bar{M}$ be a submanifold of the Riemannian manifold (\bar{M}, \bar{g}). For the second fundamental form K of M, we define

$$
\left(D_{X}^{\perp} K\right)(Y, W):=\left(\bar{D}_{X}(K(Y, W))^{\perp}-K\left(D_{X} Y, W\right)-K\left(Y, D_{X} W\right)\right.
$$

where $W, X, Y \in \Gamma(T M)$. Show that the Codazzi equation

$$
(\bar{R}(X, Y) W)^{\perp}=\left(D_{X}^{\perp} K\right)(Y, W)-\left(D_{Y}^{)}(X, W)\right.
$$

holds for all $W, X, Y \in \Gamma(T M)$.

7.2. Sectional curvature of submanifolds.

Let (\bar{M}, \bar{g}) be a Riemannian manifold with sectional curvature \bar{K}. Let $p \in \bar{M}$ and $L \subset T \bar{M}_{p}$ an m-dimensional linear subspace.

1. Prove that there is some $r>0$ such that for the open ball $B_{r}(0) \subset T \bar{M}_{p}$, the set $M:=\exp _{p}\left(L \cap B_{r}(0)\right)$ is an m-dimensional submanifold of \bar{M}.
2. Let g be the induced metric on M and let K be the sectional curvature of M. Show that for $E \subset T M_{p}$, we have $K_{p}(E)=\bar{K}_{p}(E)$ and if L is a 2-dimensional subspace, then $K \leq \bar{K}$ on M.

7.3. Small balls and scalar curvature.

Let p be a point in the m-dimensional Riemannian manifold (M, g). The goal is to prove the following Taylor expansion of the volume of the ball $B_{r}(p)$ as a function of r :

$$
\operatorname{vol}\left(B_{r}(p)\right)=\omega_{m} r^{m}\left(1-\frac{1}{6(m+2)} \operatorname{scal}(p) r^{2}+O\left(r^{3}\right)\right)
$$

1. Let $v \in T M_{p}$ with $|v|=1$, define the geodesic $c(t):=\exp _{p}(t v)$ and let $e_{1}=$ $v, e_{2}, \ldots, e_{m} \in T M_{p}$ be an orthonormal basis. Consider the Jacobi fields Y_{i} along c with $Y_{i}(0)=0$ and $\dot{Y}_{i}(0)=e_{i}$ for $i=2, \ldots m$. Show that the volume distortion factor of $\exp _{p}$ at $t v$ is given by

$$
J(v, t):=\sqrt{\operatorname{det}\left(\left\langle T_{t v} e_{i}, T_{t v} e_{j}\right\rangle\right)}=t^{-(m-1)} \sqrt{\operatorname{det}\left(\left\langle Y_{i}, Y_{j}\right\rangle\right)}
$$

where $T_{t v}:=\left(d \exp _{p}\right)_{t v}$.
2. Let E_{2}, \ldots, E_{m} be parallel vector fields along c with $E_{i}(0)=e_{i}$. Then the Taylor expansion of Y_{i} is

$$
Y_{i}(t)=t E_{i}-\sum_{k=2}^{m}\left(\frac{t^{3}}{6} R\left(e_{i}, v, e_{k}, v\right)+O\left(t^{4}\right)\right) E_{k}
$$

3. Conclude that $J(v, t)=1-\frac{t^{2}}{6} \operatorname{Ric}(v, v)+O\left(t^{4}\right)$.

Hint: Use $\operatorname{det}\left(I_{m}+\epsilon A\right)=1+\epsilon \operatorname{trace}(A)+O\left(\epsilon^{2}\right)$.
4. Prove the above formula for $\operatorname{vol}\left(B_{r}(p)\right)$.

