8. Isometries, translations, geodesics and conjugate points

8.1. Nearby conjugate points.

Prove the following Lemma.
Suppose $\gamma:[0,1] \rightarrow M$ is a geodesic and $t_{0} \in(0,1)$ is such that $\gamma\left(t_{0}\right)$ is conjugate to $\gamma(0)$ along γ. Then there exists $\epsilon>0$ so that the following holds: if $c:[0,1] \rightarrow M$ is a geodesic with $d(\gamma(t), c(t))<\epsilon$ for all $t \in[0,1]$, then there exists $t_{1} \in(0,1)$ so that $c\left(t_{1}\right)$ is conjugate to $c(0)$ along c.

8.2. Locally symmetric spaces.

Let M be a connected m-dimensional Riemannian manifold. Then M is called locally symmetric if for all $p \in M$ there is a normal neighborhood $B(p, r)$ such that the local geodesic reflection $\sigma_{p}:=\exp _{p} \circ(-\mathrm{id}) \circ \exp _{p}^{-1}: B(p, r) \rightarrow B(p, r)$ is an isometry.

1. Show that if M is locally symmetric, then $D R \equiv 0$.

Hint: Use that $d\left(\sigma_{p}\right)_{p}=-\mathrm{id}$ on $T M_{p}$.
2. Suppose that $D R \equiv 0$. Show that if $c:[-1,1] \rightarrow M$ is a geodesic and $\left\{E_{i}\right\}_{i=1}^{m}$ is a parallel orthonormal frame along c, then $R\left(E_{i}, c^{\prime}\right) c^{\prime}=\sum_{k=1}^{m} r_{i}^{k} E_{k}$ for constants r_{i}^{k}.
3. Show that if $D R \equiv 0$, then M is locally symmetric.

Hint: Let $q \in B(p, r), q \neq p$, and $v \in T M_{q}$. To show that $\left|d\left(\sigma_{p}\right)_{q}(v)\right|=|v|$, consider the geodesic $c:[-1,1] \rightarrow B(p, r)$ with $c(0)=p, c(1)=q$, and a Jacobi field Y along c with $Y(0)=0$ and $Y(1)=v$. Use 2 ..

8.3. Poincaré models of hyperbolic space.

Let us introduce the following two well-known models of the hyperbolic space:

$$
\text { Unit ball }\{|z|<1\} \subset \mathbb{R}^{n} \text { equipped with metric } g_{i j}=\frac{4 \delta_{i j}}{\left(1-|z|^{2}\right)^{2}}
$$

and
Half space $\left\{x^{n}>0\right\} \subset \mathbb{R}^{n}$ equipped with metric $g_{i j}=\frac{\delta_{i j}}{\left(x^{n}\right)^{2}}$.

1. Show that composing the transformations $y=x+\left(\frac{1}{2}-2 x^{n}\right) \boldsymbol{e}_{n}$ and $z=\boldsymbol{e}_{n}+(y-$ $\left.\boldsymbol{e}_{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2}$ give an isometry between the two previous Riemannian manifolds
2. Show that, for the second model, circular arcs at $\left\{x^{n}=0\right\}$ are geodesics.
3. Show that given any given point all geodesic rays $x(t), t \geq 0$ emanating from it are minimizing up to arbitrarily large values of $t>0$ (note that this is stronger than geodesic completeness).
4. Show that the sectional curvatures are constantly equal to -1 .

8.4. Translations.

Suppose that Γ is a group of translations of \mathbb{R}^{m} that acts freely and properly discontinuously on \mathbb{R}^{m}.

1. Show that there exist linearly independent vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ such that

$$
\Gamma=\left\{x \mapsto x+\sum_{i=1}^{k} z_{i} v_{i}:\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k}\right\} \simeq \mathbb{Z}^{k}
$$

2. Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^{m} / Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_{i} v_{i}$ with $z_{i} \in \mathbb{Z}$ as above.
