8. Isometries, translations, geodesics and conjugate points

8.1. Nearby conjugate points.

Prove the following Lemma.

Suppose $\gamma: [0,1] \to M$ is a geodesic and $t_0 \in (0,1)$ is such that $\gamma(t_0)$ is conjugate to $\gamma(0)$ along γ . Then there exists $\epsilon > 0$ so that the following holds: if $c: [0,1] \to M$ is a geodesic with $d(\gamma(t), c(t)) < \epsilon$ for all $t \in [0,1]$, then there exists $t_1 \in (0,1)$ so that $c(t_1)$ is conjugate to c(0) along c.

8.2. Locally symmetric spaces.

Let M be a connected *m*-dimensional Riemannian manifold. Then M is called *locally* symmetric if for all $p \in M$ there is a normal neighborhood B(p, r) such that the *local* geodesic reflection $\sigma_p := \exp_p \circ (-\operatorname{id}) \circ \exp_p^{-1} \colon B(p, r) \to B(p, r)$ is an isometry.

- 1. Show that if M is locally symmetric, then $DR \equiv 0$. Hint: Use that $d(\sigma_p)_p = -id$ on TM_p .
- 2. Suppose that $DR \equiv 0$. Show that if $c: [-1, 1] \to M$ is a geodesic and $\{E_i\}_{i=1}^m$ is a parallel orthonormal frame along c, then $R(E_i, c')c' = \sum_{k=1}^m r_i^k E_k$ for constants r_i^k .
- 3. Show that if $DR \equiv 0$, then M is locally symmetric. *Hint:* Let $q \in B(p,r), q \neq p$, and $v \in TM_q$. To show that $|d(\sigma_p)_q(v)| = |v|$, consider the geodesic $c: [-1,1] \rightarrow B(p,r)$ with c(0) = p, c(1) = q, and a Jacobi field Y along c with Y(0) = 0 and Y(1) = v. Use 2..

8.3. Poincaré models of hyperbolic space.

Let us introduce the following two well-known models of the hyperbolic space:

Unit ball
$$\{|z| < 1\} \subset \mathbb{R}^n$$
 equipped with metric $g_{ij} = \frac{4\delta_{ij}}{(1-|z|^2)^2}$

and

Half space
$$\{x^n > 0\} \subset \mathbb{R}^n$$
 equipped with metric $g_{ij} = \frac{\delta_{ij}}{(x^n)^2}$

- 1. Show that composing the transformations $y = x + (\frac{1}{2} 2x^n)e_n$ and $z = e_n + (y e_n)|y e_n|^{-2}$ give an isometry between the two previous Riemannian manifolds
- 2. Show that, for the second model, circular arcs at $\{x^n = 0\}$ are geodesics.

- 3. Show that given any given point all geodesic rays x(t), $t \ge 0$ emanating from it are minimizing up to arbitrarily large values of t > 0 (note that this is stronger than geodesic completeness).
- 4. Show that the sectional curvatures are constantly equal to -1.

8.4. Translations.

Suppose that Γ is a group of translations of \mathbb{R}^m that acts freely and properly discontinuously on \mathbb{R}^m .

1. Show that there exist linearly independent vectors $v_1, \ldots, v_k \in \mathbb{R}^m$ such that

$$\Gamma = \left\{ x \mapsto x + \sum_{i=1}^{k} z_i v_i : (z_1, \dots, z_k) \in \mathbb{Z}^k \right\} \simeq \mathbb{Z}^k.$$

2. Let *l* denote the infimum of the lengths of all closed curves in \mathbb{R}^m/Γ that are not null-homotopic. Show that *l* equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_i v_i$ with $z_i \in \mathbb{Z}$ as above.